A172067 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=10.
1, 11, 79, 468, 2486, 12323, 58277, 266492, 1188679, 5202523, 22436251, 95630272, 403770544, 1691678428, 7042481236, 29161852240, 120212658034, 493656394350, 2020590599710, 8247228533780, 33579755528278, 136434358356201
Offset: 0
Examples
a(4) = C(18,4) - C(17,3) + C(16,2) - C(15,1) + C(14,0) = 60*51 - 680 + 120 - 15 + 1 = 2486.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
k:=10; m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 27 2019 -
Maple
a:= n-> add((-1)^(p)*binomial(2*n-p+10, n-p), p=0..n): seq(a(n), n=0..40); # 2nd program a:= n-> coeff(series((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z)) /(2*z))^10, z, n+20), z, n): seq(a(n), n=0..40);
-
Mathematica
With[{k=10}, CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^k, {x, 0, 30}], x]] (* G. C. Greubel, Feb 27 2019 *)
-
PARI
k=10; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 27 2019
-
Sage
k=10; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 27 2019
Formula
a(n) = Sum_{j=0..n} (-1)^j*binomial(2*n+k-j,n-j), with k=10.
Conjecture: 2*n*(n+10)*(3*n+17)*a(n) - (21*n^3 + 317*n^2 + 1622*n + 2880)*a(n-1) - 2*(3*n+20)*(n+4)*(2*n+9)*a(n-2) = 0. - R. J. Mathar, Feb 21 2016
Comments