cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172067 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=10.

Original entry on oeis.org

1, 11, 79, 468, 2486, 12323, 58277, 266492, 1188679, 5202523, 22436251, 95630272, 403770544, 1691678428, 7042481236, 29161852240, 120212658034, 493656394350, 2020590599710, 8247228533780, 33579755528278, 136434358356201
Offset: 0

Views

Author

Richard Choulet, Jan 24 2010

Keywords

Comments

This sequence is the 10th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.

Examples

			a(4) = C(18,4) - C(17,3) + C(16,2) - C(15,1) + C(14,0) = 60*51 - 680 + 120 - 15 + 1 = 2486.
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172066 (k=9), this sequence (k=10).

Programs

  • Magma
    k:=10; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 27 2019
    
  • Maple
    a:= n-> add((-1)^(p)*binomial(2*n-p+10, n-p), p=0..n):
    seq(a(n), n=0..40);
    # 2nd program
    a:= n-> coeff(series((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))
            /(2*z))^10, z, n+20), z, n):
    seq(a(n), n=0..40);
  • Mathematica
    With[{k=10}, CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^k, {x, 0, 30}], x]] (* G. C. Greubel, Feb 27 2019 *)
  • PARI
    k=10; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 27 2019
    
  • Sage
    k=10; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 27 2019

Formula

a(n) = Sum_{j=0..n} (-1)^j*binomial(2*n+k-j,n-j), with k=10.
Conjecture: 2*n*(n+10)*(3*n+17)*a(n) - (21*n^3 + 317*n^2 + 1622*n + 2880)*a(n-1) - 2*(3*n+20)*(n+4)*(2*n+9)*a(n-2) = 0. - R. J. Mathar, Feb 21 2016