cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A172099 Irregular triangle T(n, k) = [x^k]( p(n, x) ), where p(n, x) = x^(2*n-1)*p(n-1, x) + p(n-2, x) with p(0, x) = 1 and p(1, x) = 1 + x, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 25 2010

Keywords

Comments

There are n^2 + 1 terms in row n, for n >= 0. - G. C. Greubel, Apr 07 2022

Examples

			Irregular triangle begins as:
  1;
  1, 1;
  1, 0, 0, 1, 1;
  1, 1, 0, 0, 0, 1, 0, 0, 1, 1;
  1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1;
  1, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1;
		

Crossrefs

Programs

  • Mathematica
    p[n_, x_]:= p[n, x]= If[n<2, n*x+1, x^(2*n-1)*p[n-1, x] + p[n-2, x]];
    Table[CoefficientList[p[n, x], x], {n,0,10}]//Flatten
  • SageMath
    @CachedFunction
    def p(n,x):
        if (n<2): return n*x+1
        else: return x^(2*n-1)*p(n-1, x) + p(n-2, x)
    def T(n,k): return ( p(n,x) ).series(x, n^2+2).list()[k]
    flatten([[T(n,k) for k in (0..n^2)] for n in (0..12)]) # G. C. Greubel, Apr 07 2022

Formula

T(n, k) = [x^k]( p(n, x) ), where p(n, x) = x^(2*n-1)*p(n-1, x) + p(n-2, x) with p(0, x) = 1 and p(1, x) = 1 + x.
Sum_{k=0..n^2} T(n, k) = Fibonacci(n+2) (row sums). - G. C. Greubel, Apr 07 2022

Extensions

Edited by G. C. Greubel, Apr 07 2022
Showing 1-1 of 1 results.