cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172137 Number of ways to place 2 nonattacking zebras on an n X n board.

Original entry on oeis.org

0, 6, 36, 112, 276, 582, 1096, 1896, 3072, 4726, 6972, 9936, 13756, 18582, 24576, 31912, 40776, 51366, 63892, 78576, 95652, 115366, 137976, 163752, 192976, 225942, 262956, 304336, 350412, 401526, 458032, 520296, 588696, 663622, 745476, 834672, 931636, 1036806
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 26 2010

Keywords

Comments

Zebra is a (fairy chess) leaper [2,3].

References

  • Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p. 829.

Crossrefs

Programs

  • Magma
    [n eq 1 select 0 else (n^4 -9*n^2 +40*n -48)/2: n in [1..50]]; // G. C. Greubel, Apr 19 2022
    
  • Mathematica
    CoefficientList[Series[2x(3+3*x-4*x^2+8*x^3-4*x^4)/(1-x)^55, {x, 0, 40}], x] (* Vincenzo Librandi, May 26 2013 *)
  • SageMath
    [(n^4 -9*n^2 +40*n -48 +16*bool(n==1))/2 for n in (1..50)] # G. C. Greubel, Apr 19 2022

Formula

a(n) = (n^4 - 9*n^2 + 40*n - 48)/2, n >= 2. (Christian Poisson, 1990)
G.f.: 2*x^2*(3+3*x-4*x^2+8*x^3-4*x^4)/(1-x)^5. - Vaclav Kotesovec, Mar 25 2010
E.g.f.: (1/2)*(16*(3+x) + (-48 + 32*x - 2*x^2 + 6*x^3 + x^4)*exp(x)). - G. C. Greubel, Apr 19 2022