cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172141 Number of ways to place 2 nonattacking nightriders on an n X n board.

Original entry on oeis.org

0, 6, 28, 96, 240, 518, 980, 1712, 2784, 4310, 6380, 9136, 12688, 17206, 22820, 29728, 38080, 48102, 59964, 73920, 90160, 108966, 130548, 155216, 183200, 214838, 250380, 290192, 334544, 383830, 438340, 498496, 564608, 637126
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 26 2010

Keywords

Comments

A nightrider is a fairy chess piece that can move (proportionate to how a knight moves) in any direction.

References

  • Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p.829

Crossrefs

Programs

  • Magma
    [(n/12)*(3*(-1)^n -(11 -18*n +10*n^2 -6*n^3)): n in [1..40]]; // G. C. Greubel, Apr 21 2022
    
  • Mathematica
    CoefficientList[Series[2*x*(3+2*x+x^2)*(1+x+2*x^2)/((1-x)^5*(1+x)^2), {x,0,40}], x] (* Vincenzo Librandi, May 27 2013 *)
  • SageMath
    [(n/12)*(3*(-1)^n -(11 -18*n +10*n^2 -6*n^3)) for n in (1..40)] # G. C. Greubel, Apr 21 2022

Formula

Explicit formula (Christian Poisson, 1990): a(n) = n*(3*n^3 - 5*n^2 + 9*n - 4)/6 if n is even and a(n) = n*(n - 1)*(3*n^2 - 2*n + 7)/6 if n is odd.
G.f.: 2*x^2*(3+2*x+x^2)*(1+x+2*x^2)/((1-x)^5*(1+x)^2). - Vaclav Kotesovec, Mar 25 2010
From G. C. Greubel, Apr 21 2022: (Start)
a(n) = (1/12)*n*(3*(-1)^n - (11 - 18*n + 10*n^2 - 6*n^3)).
E.g.f.: (x/12)*(-3*exp(-x) + (3 + 30*x + 26*x^2 + 6*x^3)exp(x)). (End)