cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172169 Decimal expansion of solution to x=Fibonacci(x) with 0

Original entry on oeis.org

3, 3, 0, 1, 1, 4, 2, 1, 4, 8, 5, 2, 8, 7, 0, 2, 0, 2, 8, 8, 9, 3, 2, 9, 5, 8, 8, 7, 7, 2, 2, 8, 2, 6, 8, 2, 5, 7, 3, 6, 9, 8, 5, 0, 0, 8, 3, 2, 6, 3, 7, 6, 3, 8, 7, 8, 1, 9, 6, 0, 0, 2, 4, 5, 1, 9, 3, 5, 9, 1, 5, 2, 7, 5, 6, 1, 6, 5, 6, 9, 8, 3, 7, 2, 6, 6, 8, 5, 0, 4, 2, 4, 0, 4, 4, 2, 0, 6, 3, 6, 7, 6, 4, 6
Offset: 0

Views

Author

Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Jan 28 2010

Keywords

Comments

Fixed point of the Fibonacci function defined as F(x) = ( phi^x - cos(Pi*x) / phi^x )/sqrt(5), an interpolation of the Fibonacci numbers, with phi = A001622, Pi = A000796.

Examples

			0.3301142148528702028... = Fibonacci(0.3301142148528702028...)
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x==Fibonacci[x],{x,.3},WorkingPrecision->120]] [[1]] (* Harvey P. Dale, Jan 19 2015 *)
  • PARI
    F(x) = my(phi=(sqrt(5)+1)/2); (phi^x - cos(Pi*x)/phi^x)/sqrt(5);
    solve(x=0.2, 0.8, x-F(x)) \\ Michel Marcus, Jul 29 2022

Formula

Gerd Lamprecht online Iterationsrechner Beispiel 59.

Extensions

Adjusted offset and leading zero from R. J. Mathar, Jan 30 2010