cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A172173 Sums of NE-SW diagonals of triangle A172171.

Original entry on oeis.org

0, 1, 1, 11, 12, 32, 44, 85, 129, 223, 352, 584, 936, 1529, 2465, 4003, 6468, 10480, 16948, 27437, 44385, 71831, 116216, 188056, 304272, 492337, 796609, 1288955, 2085564, 3374528, 5460092, 8834629, 14294721, 23129359, 37424080, 60553448, 97977528, 158530985
Offset: 0

Views

Author

Mark Dols, Jan 28 2010

Keywords

Crossrefs

Programs

  • Magma
    [Lucas(n) +7*Fibonacci(n-1) -9*((n+1) mod 2): n in [0..50]]; // G. C. Greubel, Apr 25 2022
    
  • Mathematica
    CoefficientList[Series[x*(1+8*x^2)/((1-x^2)*(1-x-x^2)), {x,0,50}], x] (* G. C. Greubel, Jul 13 2017 *)
  • PARI
    concat(0, Vec(x*(1+8*x^2)/((1-x)*(1+x)*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Jul 13 2017
    
  • Sage
    [fibonacci(n+1) +8*fibonacci(n-1) -9*((n+1)%2) for n in (0..50)] # G. C. Greubel, Apr 25 2022

Formula

For n=even: a(n) = a(n-1) + a(n-2); for n=odd: a(n) = a(n-1) + a(n-2) + 9 ; with a(0) = 0 and a(1) = 1.
From Colin Barker, Feb 18 2013: (Start)
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>3.
G.f.: x*(1+8*x^2) / ((1-x)*(1+x)*(1-x-x^2)).
(End)
a(n) = (2^(-1-n)*(-45*((-2)^n+2^n) + (45-7*sqrt(5))*(1+sqrt(5))^n + (1-sqrt(5))^n*(45+7*sqrt(5)))) / 5. - Colin Barker, Jul 13 2017
a(n) = Fibonacci(n+1) + 8*Fibonacci(n-1) - 9*((1+(-1)^n)/2). - G. C. Greubel, Apr 25 2022

Extensions

Offset corrected by Colin Barker, Feb 18 2013
Showing 1-1 of 1 results.