A172176 Triangle T(n, k) = 1 + (n + k - n*k)*(2*n - k - n*(n-k)), read by rows.
1, 2, 2, 1, 2, 1, -8, 0, 0, -8, -31, -4, 5, -4, -31, -74, -10, 22, 22, -10, -74, -143, -18, 57, 82, 57, -18, -143, -244, -28, 116, 188, 188, 116, -28, -244, -383, -40, 205, 352, 401, 352, 205, -40, -383, -566, -54, 330, 586, 714, 714, 586, 330, -54, -566
Offset: 0
Examples
Triangle begins as: 1; 2, 2; 1, 2, 1; -8, 0, 0, -8; -31, -4, 5, -4, -31; -74, -10, 22, 22, -10, -74; -143, -18, 57, 82, 57, -18, -143; -244, -28, 116, 188, 188, 116, -28, -244; -383, -40, 205, 352, 401, 352, 205, -40, -383; -566, -54, 330, 586, 714, 714, 586, 330, -54, -566; -799, -70, 497, 902, 1145, 1226, 1145, 902, 497, -70, -799;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[1 + (n-(n-1)*k)*(n-(n-1)*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 26 2022
-
Maple
A172176:= proc(n,m) 1+(n+m-n*m)*(2*n-m-n*(n-m)); end proc: seq(seq(A172176(n,m), m=0..n), n=0..12);
-
Mathematica
T[n_, k_]= 1 + (n-(n-1)*k)*(n-(n-1)*(n-k)); Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
def A172176(n,k): return 1 + (n-(n-1)*k)*(n-(n-1)*(n-k)) flatten([[A172176(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 26 2022