A172179 (1,[99n+1]) Pascal Triangle.
1, 1, 100, 1, 101, 199, 1, 102, 300, 298, 1, 103, 402, 598, 397, 1, 104, 505, 1000, 995, 496, 1, 105, 609, 1505, 1995, 1491, 595, 1, 106, 714, 2114, 3500, 3486, 2086, 694, 1, 107, 820, 2828, 5614, 6986, 5572, 2780, 793, 1, 108, 927, 3648, 8442, 12600, 12558
Offset: 1
Examples
Triangle begins as: 1; 1, 100; 1, 101, 199; 1, 102, 300, 298; 1, 103, 402, 598, 397; 1, 104, 505, 1000, 995, 496; 1, 105, 609, 1505, 1995, 1491, 595; 1, 106, 714, 2114, 3500, 3486, 2086, 694; 1, 107, 820, 2828, 5614, 6986, 5572, 2780, 793; 1, 108, 927, 3648, 8442, 12600, 12558, 8352, 3573, 892;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Mathematica
Table[99*Binomial[n-1, k-2] + Binomial[n-1, k-1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Apr 27 2022 *)
-
SageMath
flatten([[98*binomial(n-1,k-2) + binomial(n,k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 27 2022
Formula
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(1,0) = T(2,0) = 1, T(2,1) = 100, T(n,k)=0 if k<0 or if k>=n. - Philippe Deléham, Dec 26 2013
From G. C. Greubel, Apr 27 2022: (Start)
T(n, k) = 99*binomial(n-1, k-2) + binomial(n-1, k-1).
T(n, n) = A172178(n-1).
Sum_{k=1..n} T(n, k) = 100*A000225(n-1) + 1. (End)