cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172179 (1,[99n+1]) Pascal Triangle.

Original entry on oeis.org

1, 1, 100, 1, 101, 199, 1, 102, 300, 298, 1, 103, 402, 598, 397, 1, 104, 505, 1000, 995, 496, 1, 105, 609, 1505, 1995, 1491, 595, 1, 106, 714, 2114, 3500, 3486, 2086, 694, 1, 107, 820, 2828, 5614, 6986, 5572, 2780, 793, 1, 108, 927, 3648, 8442, 12600, 12558
Offset: 1

Views

Author

Mark Dols, Jan 28 2010

Keywords

Examples

			Triangle begins as:
  1;
  1, 100;
  1, 101, 199;
  1, 102, 300,  298;
  1, 103, 402,  598,  397;
  1, 104, 505, 1000,  995,   496;
  1, 105, 609, 1505, 1995,  1491,   595;
  1, 106, 714, 2114, 3500,  3486,  2086,  694;
  1, 107, 820, 2828, 5614,  6986,  5572, 2780,  793;
  1, 108, 927, 3648, 8442, 12600, 12558, 8352, 3573, 892;
		

Crossrefs

Programs

  • Mathematica
    Table[99*Binomial[n-1, k-2] + Binomial[n-1, k-1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Apr 27 2022 *)
  • SageMath
    flatten([[98*binomial(n-1,k-2) + binomial(n,k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 27 2022

Formula

T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(1,0) = T(2,0) = 1, T(2,1) = 100, T(n,k)=0 if k<0 or if k>=n. - Philippe Deléham, Dec 26 2013
From G. C. Greubel, Apr 27 2022: (Start)
T(n, k) = 99*binomial(n-1, k-2) + binomial(n-1, k-1).
T(n, n) = A172178(n-1).
Sum_{k=1..n} T(n, k) = 100*A000225(n-1) + 1. (End)