cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172185 (9,11) Pascal triangle.

Original entry on oeis.org

1, 9, 11, 9, 20, 11, 9, 29, 31, 11, 9, 38, 60, 42, 11, 9, 47, 98, 102, 53, 11, 9, 56, 145, 200, 155, 64, 11, 9, 65, 201, 345, 355, 219, 75, 11, 9, 74, 266, 546, 700, 574, 294, 86, 11, 9, 83, 340, 812, 1246, 1274, 868, 380, 97, 11, 9, 92, 423, 1152, 2058, 2520, 2142, 1248, 477, 108, 11
Offset: 0

Views

Author

Mark Dols, Jan 28 2010

Keywords

Comments

Sums of NW-SE diagonals give A022114 (apart from first two terms).
Triangle T(n,k), read by rows, given by (9,-8,0,0,0,0,0,0,0,...) DELTA (11,-10,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 09 2011
Row n: Expansion of (9+11x)*(1+x)^(n-1), n > 0. - Philippe Deléham, Oct 09 2011

Examples

			Triangle begins:
  1;
  9, 11;
  9, 20,  11;
  9, 29,  31,   11;
  9, 38,  60,   42,   11;
  9, 47,  98,  102,   53,   11;
  9, 56, 145,  200,  155,   64,   11;
  9, 65, 201,  345,  355,  219,   75,   11;
  9, 74, 266,  546,  700,  574,  294,   86,  11;
  9, 83, 340,  812, 1246, 1274,  868,  380,  97,  11;
  9, 92, 423, 1152, 2058, 2520, 2142, 1248, 477, 108, 11;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[n==0, 1, (9 + 2*k/n)*Binomial[n, k]]
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2022 *)
  • SageMath
    def A172185(n,k): return 9*binomial(n,k) +2*binomial(n-1,k-1) -8*bool(n==0)
    flatten([[A172185(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2022

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(1,0)=9, T(1,1)=11. - Philippe Deléham, Oct 09 2011
G.f.: (1+8*x+10*y*x)/(1-x-y*x). - Philippe Deléham, Apr 13 2012
From G. C. Greubel, Apr 28 2022: (Start)
T(n, k) = 9*binomial(n, k) + 2*binomial(n-1, k-1) with T(0, 0) = 1.
Sum_{k=0..n} T(n, k) = 10*2^n - 9*[n=0]. (End)

Extensions

Corrected and extended by Philippe Deléham, Oct 09 2011