A172185 (9,11) Pascal triangle.
1, 9, 11, 9, 20, 11, 9, 29, 31, 11, 9, 38, 60, 42, 11, 9, 47, 98, 102, 53, 11, 9, 56, 145, 200, 155, 64, 11, 9, 65, 201, 345, 355, 219, 75, 11, 9, 74, 266, 546, 700, 574, 294, 86, 11, 9, 83, 340, 812, 1246, 1274, 868, 380, 97, 11, 9, 92, 423, 1152, 2058, 2520, 2142, 1248, 477, 108, 11
Offset: 0
Examples
Triangle begins: 1; 9, 11; 9, 20, 11; 9, 29, 31, 11; 9, 38, 60, 42, 11; 9, 47, 98, 102, 53, 11; 9, 56, 145, 200, 155, 64, 11; 9, 65, 201, 345, 355, 219, 75, 11; 9, 74, 266, 546, 700, 574, 294, 86, 11; 9, 83, 340, 812, 1246, 1274, 868, 380, 97, 11; 9, 92, 423, 1152, 2058, 2520, 2142, 1248, 477, 108, 11;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= If[n==0, 1, (9 + 2*k/n)*Binomial[n, k]] Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2022 *)
-
SageMath
def A172185(n,k): return 9*binomial(n,k) +2*binomial(n-1,k-1) -8*bool(n==0) flatten([[A172185(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2022
Formula
T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(1,0)=9, T(1,1)=11. - Philippe Deléham, Oct 09 2011
G.f.: (1+8*x+10*y*x)/(1-x-y*x). - Philippe Deléham, Apr 13 2012
From G. C. Greubel, Apr 28 2022: (Start)
T(n, k) = 9*binomial(n, k) + 2*binomial(n-1, k-1) with T(0, 0) = 1.
Sum_{k=0..n} T(n, k) = 10*2^n - 9*[n=0]. (End)
Extensions
Corrected and extended by Philippe Deléham, Oct 09 2011
Comments