cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A172212 Number of ways to place 3 nonattacking knights on a 3 X n board.

Original entry on oeis.org

1, 12, 36, 100, 233, 456, 796, 1280, 1935, 2788, 3866, 5196, 6805, 8720, 10968, 13576, 16571, 19980, 23830, 28148, 32961, 38296, 44180, 50640, 57703, 65396, 73746, 82780, 92525, 103008, 114256, 126296, 139155, 152860, 167438, 182916, 199321
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(6 x^6 - 8 x^5 + 2 x^4 + 24 x^3 - 6 x^2 + 8 x + 1) / (x - 1)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (9n^3 - 45n^2 + 122n - 144)/2, n>=4.
G.f.: x*(6*x^6-8*x^5+2*x^4+24*x^3-6*x^2+8*x+1)/(x-1)^4. - Vaclav Kotesovec, Mar 25 2010

A172203 Number of ways to place 4 nonattacking kings on a 4 X n board.

Original entry on oeis.org

0, 0, 9, 79, 454, 1566, 4103, 9009, 17484, 30984, 51221, 80163, 120034, 173314, 242739, 331301, 442248, 579084, 745569, 945719, 1183806, 1464358, 1792159, 2172249, 2609924
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (68 x^4 - 4 x^3 + 149 x^2 + 34 x + 9) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (64n^4 - 720n^3 + 3347n^2 - 7569n + 6894)/6, n>=3.
G.f.: -x^3*(68*x^4-4*x^3+149*x^2+34*x+9)/(x-1)^5. - Vaclav Kotesovec, Mar 24 2010

A172204 Number of ways to place 5 nonattacking kings on a 5 X n board.

Original entry on oeis.org

0, 0, 15, 194, 1974, 9856, 34475, 95466, 224589, 468854, 893646, 1585850, 2656976, 4246284, 6523909, 9693986, 13997775, 19716786, 27175904, 36746514, 48849626, 63959000, 82604271, 105374074, 132919169
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2 * (259 * x^6 - 204 * x^5 + 1294 * x^4 + 622 * x^3 + 1035 * x^2 + 104 * x + 15)/(x - 1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (625n^5-9750n^4+66415n^3-247626n^2+504664n-446544)/24, n>=4.
G.f.: x^3*(259*x^6-204*x^5+1294*x^4+622*x^3+1035*x^2+104*x+15)/(x-1)^6. - Vaclav Kotesovec, Mar 24 2010

A172205 Number of ways to place 6 nonattacking kings on a 6 X n board.

Original entry on oeis.org

0, 0, 16, 408, 8544, 62266, 291908, 1021254, 2916232, 7179314, 15790572, 31795390, 59638832, 105546666, 177953044, 287974838, 449932632, 681918370, 1006409660, 1450930734, 2048760064, 2839684634, 3870800868, 5197362214, 6883673384
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-2 x^2 (475 x^8 - 1015 x^7 + 4398 x^6 + 194 x^5 + 10875 x^4 + 5233 x^3 + 3012 x^2 + 148 x + 8) / (x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = 2*(162n^6-3240n^5+29160n^4-151830n^3+483798n^2-895085n+749335)/5, n>=5.
G.f.: -2*x^3*(475*x^8-1015*x^7+4398*x^6+194*x^5+10875*x^4+5233*x^3+3012*x^2 +148*x+8)/(x-1)^7. - Vaclav Kotesovec, Mar 24 2010

A172206 Number of ways to place 7 nonattacking kings on a 7 X n board.

Original entry on oeis.org

0, 0, 24, 926, 37282, 394202, 2484382, 10999618, 38168864, 110899878, 281638602, 643766432, 1352358921, 2651129458, 4906381466, 8648792662, 14623854922, 23851793294, 37697787702, 57953320884, 86929476107, 127563008202, 183536011462, 259410007946, 360775279732
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2 (3387 x^10 - 13990 x^9 + 57102 x^8 - 55038 x^7 + 217860 x^6 + 137902 x^5 + 324486 x^4 + 120530 x^3 + 30546 x^2 + 734 x + 24) / (x - 1)^8, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (117649n^7 -2873997n^6 +32197753n^5 -215350695n^4 +932130286n^3 -2618213868n^2 +4424623272n -3468569760)/720, n>=6. For any fixed value of k > 1, a(n) = 1/k!*(kn)^k - 3(k-1)(3k-2)/2/k!*(kn)^(k-1) + ... .
G.f.: x^3*(3387*x^10 -13990*x^9 +57102*x^8 -55038*x^7 +217860*x^6 +137902*x^5 +324486*x^4 +120530*x^3 +30546*x^2 +734*x +24)/(x-1)^8. - Vaclav Kotesovec, Mar 24 2010

A172261 Number of ways to place 8 nonattacking kings on an 8 X n board.

Original entry on oeis.org

0, 0, 25, 1847, 162531, 2501726, 21243084, 119138166, 502726650, 1724809105, 5059647669, 13132889249, 30905051345, 67124176002, 136380034610, 261909043488, 479315827404, 841394145399, 1424246670499, 2334919892115
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 30 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (11814 x^12 - 80082 x^11 + 366204 x^10 - 759794 x^9 + 1916625 x^8 - 283007 x^7 + 5337480 x^6 + 4589514 x^5 + 4426668 x^4 + 1103339 x^3 + 146808 x^2 + 1622 x + 25) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)

Formula

a(n) = (1048576n^8 -30277632n^7 +406210560n^6 -3319585920n^5 +18136811049n^4 -68048382318n^3 +171628664735n^2 -266425935930n +194935658400)/2520, n>=7.
G.f.: -x^3*(11814*x^12 -80082*x^11 +366204*x^10 -759794*x^9 +1916625*x^8 -283007*x^7 +5337480*x^6 +4589514*x^5 +4426668*x^4 +1103339*x^3 +146808*x^2 +1622*x +25)/(x-1)^9. [Vaclav Kotesovec, Mar 24 2010]
Showing 1-6 of 6 results.