cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A172208 Number of ways to place 4 nonattacking bishops on a 4 X n board.

Original entry on oeis.org

1, 9, 61, 260, 927, 2578, 5965, 12066, 22135, 37678, 60457, 92488, 136043, 193650, 268093, 362412, 479903, 624118, 798865, 1008208, 1256467, 1548218, 1888293, 2281780, 2734023, 3250622, 3837433, 4500568, 5246395, 6081538, 7012877
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1 (2 x^12 - 2 x^11 + 4 x^10 - 24 x^9 + 50 x^8 - 10 x^7 + 41 x^6 - 23 x^5 + 152 * x^4 + 35 x^3 + 26  x^2 + 4 x + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,9,61,260,927,2578,5965,12066,22135,37678,60457,92488,136043},40] (* Harvey P. Dale, Dec 13 2021 *)

Formula

a(n) = (32*n^4 -336*n^3 +1702*n^2 -4701*n +5844) / 3, n>=9.
G.f.: -x * (2*x^12 -2*x^11 +4*x^10 -24*x^9 +50*x^8 -10*x^7 +41*x^6 -23*x^5 +152*x^4 +35*x^3 +26*x^2 +4*x+1) / (x-1)^5. - Vaclav Kotesovec, Mar 25 2010

A172210 Number of ways to place 5 nonattacking bishops on a 5 X n board.

Original entry on oeis.org

1, 12, 143, 770, 3368, 12632, 38566, 98968, 222351, 450682, 843169, 1479116, 2460912, 3917228, 6006056, 8917888, 12878847, 18153806, 25049515, 33917724, 45158308, 59222392, 76615476, 97900560, 123701269, 154704978, 191665937, 235408396, 286829730, 346903564
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2 x^20 - 4 x^19 + 8 x^18 - 12 x^17 - 48 x^16 + 140 x^15 - 158 x^14 + 208 x^13 + 134 x^12 - 932 x^11 + 1048*x^10 -182*x^9+ 436 * x^8 + 396 x^7 - 32 x^6 + 1288 * x^5 + 668 * x^4 + 72 * x^3 + 86 * x^2 + 6 * x + 1) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (625n^5-11250n^4+98875n^3-515250n^2+1566016n-2194944)/24, n>=16.
G.f.: x*(2*x^20 -4*x^19 +8*x^18 -12*x^17 -48*x^16 +140*x^15 -158*x^14 +208*x^13 +134*x^12 -932*x^11 +1048*x^10 -182*x^9 +436*x^8 +396*x^7 -32*x^6 +1288*x^5 +668*x^4 +72*x^3 +86*x^2 +6*x+1)/(x-1)^6. - Vaclav Kotesovec, Mar 25 2010

A172211 Number of ways to place 6 nonattacking bishops on a 6 X n board.

Original entry on oeis.org

1, 16, 313, 2320, 12160, 53744, 209428, 683524, 1905625, 4664384, 10297579, 20907590, 39664250, 71114916, 121559433, 199459466, 315906248, 485124352, 725031335, 1057839684, 1510706686, 2116429956, 2914190277, 3950340692
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(2 x^30 - 6 x^29 + 14 x^28 - 26 x^27 + 44 x^26 - 220 x^25 + 596 x^24 - 1060 x^23 + 1654 x^22 - 2266 x^21 + 5622 x^20 - 13570 x^19 + 19848 x^18 - 22392 x^17 + 24048 x^16 - 30525 x^15 + 57673 x^14 - 80154 x^13 + 61962 x^12 - 30874 x^11 + 25832 x^10 - 9360 x^9 + 16960 x^8 - 4710 x^7 + 18006 x^6 + 6928 x^5 + 1968 x^4 + 430 x^3 + 222 x^2 + 9 x + 1) / (x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (648n^6-17820n^5+240930n^4-2011545n^3+10806047n^2-35094560n+53430940)/10, n>=25.
For any fixed value of k > 1, a(n) = 1/k!*(kn)^k - (2k-1)/2/(k-2)!*(kn)^(k-1) + ...
G.f.: -x*(2*x^30-6*x^29+14*x^28-26*x^27+44*x^26-220*x^25+596*x^24-1060*x^23+1654*x^22
-2266*x^21+5622*x^20-13570*x^19+19848*x^18-22392*x^17+24048*x^16-30525*x^15+57673*x^14
-80154*x^13+61962*x^12-30874*x^11+25832*x^10-9360*x^9+16960*x^8-4710*x^7+18006*x^6+6928*x^5
+1968*x^4+430*x^3+222*x^2+9*x+1)/(x-1)^7. - Vaclav Kotesovec, Mar 25 2010
Showing 1-3 of 3 results.