cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172225 Number of ways to place 2 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 2, 24, 96, 260, 570, 1092, 1904, 3096, 4770, 7040, 10032, 13884, 18746, 24780, 32160, 41072, 51714, 64296, 79040, 96180, 115962, 138644, 164496, 193800, 226850, 263952, 305424, 351596, 402810, 459420, 521792, 590304
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

A wazir is a (fairy chess) leaper [0,1].

References

  • Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p. 829.

Crossrefs

Programs

  • Magma
    I:=[0, 2, 24, 96, 260]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
    
  • Magma
    [n*(n-1)*(n^2+n-4)/2: n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
  • Mathematica
    Table[n (n - 1) (n^2 + n - 4) / 2, {n, 40}] (* Vincenzo Librandi, Apr 30 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,2,24,96,260},40] (* Harvey P. Dale, Jun 04 2023 *)

Formula

Explicit formula (Christian Poisson, 1990): a(n) = n*(n-1)*(n^2+n-4)/2.
G.f.: 2*x^2*(2*x^2-7*x-1)/(x-1)^5. - Vaclav Kotesovec, Mar 25 2010
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Apr 30 2013
a(n) = 2*A239352(n). - R. J. Mathar, Jan 09 2018
a(n) = A232833(n,2). - R. J. Mathar, Apr 11 2024