cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172251 Arises in the representability of integers as sums of triangular numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 23, 24, 25, 26, 29, 32, 33, 34, 35, 38, 41, 46, 47, 48, 50, 53, 54, 58, 62, 63, 75, 86, 96, 101, 102, 113, 117, 129, 162, 195, 204, 233
Offset: 1

Views

Author

Jonathan Vos Post, Jan 29 2010

Keywords

Comments

Wieb Bosma, p.10: Following the bounds given in the proof of Theorem 1.6, computational evidence suggests that... a proof of the above identity using the techniques of Bhargava and Hanke developed in the proof of the 290-Theorem may require a careful analysis of a possible Siegel zero. The sequence given is thus conjectured to be complete as shown.

References

  • M. Bhargava, J. Hanke, Universal Quadratic Forms and the 290-Theorem, preprint.

Crossrefs

Cf. A030051.