A172292 Triangle read by rows: T(n, k) = (2*n+1)*(2*k+1), n>=1, 1<=k<=n.
9, 15, 25, 21, 35, 49, 27, 45, 63, 81, 33, 55, 77, 99, 121, 39, 65, 91, 117, 143, 169, 45, 75, 105, 135, 165, 195, 225, 51, 85, 119, 153, 187, 221, 255, 289, 57, 95, 133, 171, 209, 247, 285, 323, 361, 63, 105, 147, 189, 231, 273, 315, 357, 399, 441, 69, 115, 161
Offset: 1
Examples
Triangle begins: 9; 15, 25; 21, 35, 49; 27, 45, 63, 81; 33, 55, 77, 99, 121; 39, 65, 91, 117, 143, 169; 45, 75, 105, 135, 165, 195, 225; 51, 85, 119, 153, 187, 221, 255, 289; 57, 95, 133, 171, 209, 247, 285, 323, 361; 63, 105, 147, 189, 231, 273, 315, 357, 399, 441; etc. Number of occurrences: 63 = 9*7 = 21*3 has two nontrivial factorizations, thus occurs twice.
Links
- Vincenzo Librandi, Rows n = 1..100, flattened
- OEIS Wiki, Odd composites
Programs
-
Magma
[4*n*k + 2*n + 2*k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
Mathematica
t[n_,k_]:= 4 n*k + 2n + 2k + 1; Table[t[n, k], {n,15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
Formula
T(n, k) = A144562(n,k)*2+3 read by rows. (Was old name.)
T(n, k) = 2*A083487(n, k)+1. - Daniel Forgues, Sep 20 2011
Comments