A172317 8th column of A172119.
1, 2, 4, 8, 16, 32, 64, 128, 255, 508, 1012, 2016, 4016, 8000, 15936, 31744, 63233, 125958, 250904, 499792, 995568, 1983136, 3950336, 7868928, 15674623, 31223288, 62195672, 123891552, 246787536, 491591936, 979233536
Offset: 0
Examples
a(4) = binomial(4,4)*2^4 = 16. a(9) = binomial(9,9)*2^9 - binomial(2,1)*2^1 = 512 - 4 = 508.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,0,0,0,-1).
Programs
-
Maple
k:=7:taylor(1/(1-2*z+z^(k+1)),z=0,30); for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od;
Formula
The generating function is f such that: f(z)=1/(1-2*z+z^8). Recurrence relation: a(n+8)=2*a(n+7)-a(n). General term: a(n) = Sum_{j=0..floor(n/(k+1))} ((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j)) with k=7.