A172333 Numbers m such that m and m+22 have the same sum of divisors.
57, 85, 213, 224, 354, 476, 568, 594, 812, 1218, 1235, 1316, 1484, 2103, 2470, 2492, 2643, 2840, 2996, 3836, 3978, 4026, 4544, 4810, 4844, 5012, 6125, 6356, 6524, 7364, 7532, 7648, 8876, 9272, 9328, 10098, 11107, 11797, 12572, 12594, 13412, 13640
Offset: 1
Keywords
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 62, p. 22, Ellipses, Paris 2008.
- W. Sierpinski, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 110.
- Tomohiro Yamada, On equations sigma(n) = sigma(n+k) and phi(n) = phi(n+k), J. Comb. Number Theory 9 (2017), 15-21.
Links
- Tomohiro Yamada, Table of n, a(n) for n = 1..46702 (All terms < 2^28, first 2000 terms from Muniru A Asiru)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
- G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1-70.
- Tomohiro Yamada, On equations sigma(n) = sigma(n+k) and phi(n) = phi(n+k)<, arXiv:1001.2511 [math.NT], 2010.
Programs
-
GAP
Filtered([1..13700],k->Sigma(k)=Sigma(k+22)); # Muniru A Asiru, Oct 20 2018
-
Maple
with(numtheory):for n from 1 to 20000 do;if sigma(n) = sigma(n+22) then print(n); else fi ; od;
-
PARI
isok(k) = sigma(k)==sigma(k+22); \\ Altug Alkan, Oct 03 2018
Comments