A172335 Numbers k such that k and k+17 have same sum of divisors.
142, 238, 418, 429, 598, 622, 2985, 3502, 16269, 22678, 23188, 27778, 38494, 46761, 48489, 62235, 74188, 98745, 110170, 120345, 129448, 151677, 187822, 190888, 194818, 205185, 223685, 235438, 246934, 249166
Offset: 1
Keywords
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 62, p. 22, Ellipses, Paris 2008.
- W. SierpiĆski, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 110.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Crossrefs
Cf. A000203.
Programs
-
Magma
[m:m in [1..250000]| SumOfDivisors(m) eq SumOfDivisors(m+17)]; // Marius A. Burtea, Aug 11 2019
-
Maple
with(numtheory):for n from 1 to 250000 do;if sigma(n) = sigma(n+17) then print(n); else fi ; od;
-
Mathematica
Select[Range[10^5], DivisorSigma[1, #] == DivisorSigma[1, # + 17] &] (* Amiram Eldar, Aug 11 2019 *)