A175201 a(n) is the smallest k such that the n consecutive values lambda(k), lambda(k+1), ..., lambda(k+n-1) = 1, where lambda(m) is the Liouville function A008836(m).
1, 9, 14, 33, 54, 140, 140, 213, 213, 1934, 1934, 1934, 35811, 38405, 38405, 200938, 200938, 389409, 1792209, 5606457, 8405437, 8405437, 8405437, 8405437, 68780189, 68780189, 68780189, 68780189, 880346227, 880346227, 880346227, 880346227, 880346227
Offset: 1
Keywords
Examples
a(1) = 1 and L(1) = 1; a(2) = 9 and L(9) = L(10)= 1; a(3) = 14 and L(14) = L(15) = L(16) = 1; a(4) = 33 and L(33) = L(34) = L(35) = L(36) = 1.
References
- H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
- H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.
Links
- Donovan Johnson and Giovanni Resta, Table of n, a(n) for n = 1..44 (terms < 10^13, first 37 terms from Donovan Johnson)
- Peter Borwein, Ron Ferguson, and Michael J. Mossinghoff, Sign changes in sums of the Liouville function, Math. Comp. 77 (2008), 1681-1694.
- R. S. Lehman, On Liouville's function, Math. Comp., 14 (1960), 311-320.
Programs
-
Maple
with(numtheory):for k from 0 to 30 do : indic:=0:for n from 1 to 1000000000 while (indic=0)do :s:=0:for i from 0 to k do :if (-1)^bigomega(n+i)= 1 then s:=s+1: else fi:od:if s=k+1 and indic=0 then print(n):indic:=1:else fi:od:od:
-
Mathematica
Table[k=1;While[Sum[LiouvilleLambda[k+i],{i,0,n-1}]!=n,k++];k,{n,1,30}] With[{c=LiouvilleLambda[Range[841*10^4]]},Table[SequencePosition[c,PadRight[ {},n,1],1][[All,1]],{n,24}]//Flatten] (* The program generates the first 24 terms of the sequence. *) (* Harvey P. Dale, Jul 27 2022 *)
Formula
lambda(n) = (-1)^omega(n) where omega(n) is the number of prime factors of n with multiplicity.
Comments