cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172356 Triangle T(n, k) = round( c(n)/(c(k)*c(n-k)) ), where c(n) = Product_{j=1..n} A078012(j+3), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 6, 6, 3, 1, 1, 4, 12, 24, 12, 4, 1, 1, 6, 24, 72, 72, 24, 6, 1, 1, 9, 54, 216, 324, 216, 54, 9, 1, 1, 13, 117, 702, 1404, 1404, 702, 117, 13, 1, 1, 19, 247, 2223, 6669, 8892, 6669, 2223, 247, 19, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 01 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  1,   1;
  1,  1,   1,    1;
  1,  2,   2,    2,    1;
  1,  3,   6,    6,    3,    1;
  1,  4,  12,   24,   12,    4,    1;
  1,  6,  24,   72,   72,   24,    6,    1;
  1,  9,  54,  216,  324,  216,   54,    9,   1;
  1, 13, 117,  702, 1404, 1404,  702,  117,  13,  1;
  1, 19, 247, 2223, 6669, 8892, 6669, 2223, 247, 19, 1;
		

Crossrefs

cf. A078012.

Programs

  • Mathematica
    f[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], q*f[n-1, q] + f[n-3, q]];
    c[n_, q_]:= Product[f[j, q], {j,n}];
    T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
    Table[T[n, k, 1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 09 2021 *)
  • Sage
    @CachedFunction
    def f(n,q): return fibonacci(n) if (n<3) else q*f(n-1, q) + f(n-3, q)
    def c(n,q): return product( f(j,q) for j in (1..n) )
    def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 09 2021

Formula

T(n, k, q) = round( c(n,q)/(c(k,q)*c(n-k,q)) ), where c(n,q) = Product_{j=1..n} f(j,q), f(n,q) = q*f(n-1,q) + f(n-3,q), f(0,q) = 0, f(1,q) = f(2,q) = 1, and q = 1.
T(n, k) = round( c(n)/(c(k)*c(n-k)) ), where c(n) = Product_{j=1..n} A078012(j+3). - G. C. Greubel, May 09 2021

Extensions

Definition corrected to give integral terms by G. C. Greubel, May 09 2021