A172356 Triangle T(n, k) = round( c(n)/(c(k)*c(n-k)) ), where c(n) = Product_{j=1..n} A078012(j+3), read by rows.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 6, 6, 3, 1, 1, 4, 12, 24, 12, 4, 1, 1, 6, 24, 72, 72, 24, 6, 1, 1, 9, 54, 216, 324, 216, 54, 9, 1, 1, 13, 117, 702, 1404, 1404, 702, 117, 13, 1, 1, 19, 247, 2223, 6669, 8892, 6669, 2223, 247, 19, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 1, 1; 1, 1, 1, 1; 1, 2, 2, 2, 1; 1, 3, 6, 6, 3, 1; 1, 4, 12, 24, 12, 4, 1; 1, 6, 24, 72, 72, 24, 6, 1; 1, 9, 54, 216, 324, 216, 54, 9, 1; 1, 13, 117, 702, 1404, 1404, 702, 117, 13, 1; 1, 19, 247, 2223, 6669, 8892, 6669, 2223, 247, 19, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
cf. A078012.
Programs
-
Mathematica
f[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], q*f[n-1, q] + f[n-3, q]]; c[n_, q_]:= Product[f[j, q], {j,n}]; T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])]; Table[T[n, k, 1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 09 2021 *)
-
Sage
@CachedFunction def f(n,q): return fibonacci(n) if (n<3) else q*f(n-1, q) + f(n-3, q) def c(n,q): return product( f(j,q) for j in (1..n) ) def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q))) flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 09 2021
Formula
T(n, k, q) = round( c(n,q)/(c(k,q)*c(n-k,q)) ), where c(n,q) = Product_{j=1..n} f(j,q), f(n,q) = q*f(n-1,q) + f(n-3,q), f(0,q) = 0, f(1,q) = f(2,q) = 1, and q = 1.
T(n, k) = round( c(n)/(c(k)*c(n-k)) ), where c(n) = Product_{j=1..n} A078012(j+3). - G. C. Greubel, May 09 2021
Extensions
Definition corrected to give integral terms by G. C. Greubel, May 09 2021