A172358 Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 3, 9, 9, 3, 1, 1, 5, 15, 45, 15, 5, 1, 1, 9, 45, 135, 135, 45, 9, 1, 1, 11, 99, 495, 495, 495, 99, 11, 1, 1, 19, 209, 1881, 3135, 3135, 1881, 209, 19, 1, 1, 29, 551, 6061, 18183, 30305, 18183, 6061, 551, 29, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 1, 1; 1, 1, 1, 1; 1, 3, 3, 3, 1; 1, 3, 9, 9, 3, 1; 1, 5, 15, 45, 15, 5, 1; 1, 9, 45, 135, 135, 45, 9, 1; 1, 11, 99, 495, 495, 495, 99, 11, 1; 1, 19, 209, 1881, 3135, 3135, 1881, 209, 19, 1; 1, 29, 551, 6061, 18183, 30305, 18183, 6061, 551, 29, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
f[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], f[n-2, q] + q*f[n-3, q]]; c[n_, q_]:= Product[f[j, q], {j,n}]; T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])]; Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 09 2021 *)
-
Sage
@CachedFunction def f(n,q): return fibonacci(n) if (n<3) else f(n-2, q) + q*f(n-3, q) def c(n,q): return product( f(j,q) for j in (1..n) ) def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q))) flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 09 2021
Formula
T(n, k, q) = round(c(n,q)/(c(k,q)*c(n-k,q))), where c(n,q) = Product_{j=1..n} f(j,q), f(n, q) = f(n-2, q) + q*f(n-3, q), f(0,q) = 0, f(1,q) = f(2,q) = 1, and q = 2. - G. C. Greubel, May 09 2021
Extensions
Definition corrected to give integral terms by G. C. Greubel, May 09 2021
Comments