A172364
Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 10, 30, 30, 10, 1, 1, 31, 310, 930, 310, 31, 1, 1, 94, 2914, 29140, 29140, 2914, 94, 1, 1, 285, 26790, 830490, 2768300, 830490, 26790, 285, 1, 1, 865, 246525, 23173350, 239457950, 239457950, 23173350, 246525, 865, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 3, 3, 3, 1;
1, 10, 30, 30, 10, 1;
1, 31, 310, 930, 310, 31, 1;
1, 94, 2914, 29140, 29140, 2914, 94, 1;
1, 285, 26790, 830490, 2768300, 830490, 26790, 285, 1;
1, 865, 246525, 23173350, 239457950, 239457950, 23173350, 246525, 865, 1;
Cf.
A172363 (q=1), this sequence (q=3).
-
f[n_, q_]:= f[n, q]= If[n==0,0,If[n<4, 1, q*f[n-1, q] + f[n-4, q]]];
c[n_, q_]:= Product[f[j, q], {j,n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 08 2021 *)
-
@CachedFunction
def f(n,q): return 0 if (n==0) else 1 if (n<4) else q*f(n-1, q) + f(n-4, q)
def c(n,q): return product( f(j,q) for j in (1..n) )
def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 08 2021
Definition corrected to give integral terms,
G. C. Greubel, May 08 2021
A172368
Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c is a sequence defined in comments.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 5, 15, 15, 15, 5, 1, 1, 7, 35, 105, 105, 35, 7, 1, 1, 9, 63, 315, 945, 315, 63, 9, 1, 1, 15, 135, 945, 4725, 4725, 945, 135, 15, 1, 1, 25, 375, 3375, 23625, 39375, 23625, 3375, 375, 25, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 1;
1, 3, 3, 3, 3, 1;
1, 5, 15, 15, 15, 5, 1;
1, 7, 35, 105, 105, 35, 7, 1;
1, 9, 63, 315, 945, 315, 63, 9, 1;
1, 15, 135, 945, 4725, 4725, 945, 135, 15, 1;
1, 25, 375, 3375, 23625, 39375, 23625, 3375, 375, 25, 1;
-
f[n_, q_]:= f[n, q]= If[n==0,0,If[n<4, 1, f[n-1, q] + q*f[n-4, q]]];
c[n_, q_]:= Product[f[j, q], {j,n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 08 2021 *)
-
@CachedFunction
def f(n,q): return 0 if (n==0) else 1 if (n<4) else f(n-1, q) + q*f(n-4, q)
def c(n,q): return product( f(j,q) for j in (1..n) )
def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 08 2021
Definition corrected to give integral terms,
G. C. Greubel, May 08 2021
A172369
Triangle read by rows: T(n,k,q) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 1, 1, 7, 28, 28, 28, 7, 1, 1, 10, 70, 280, 280, 70, 10, 1, 1, 13, 130, 910, 3640, 910, 130, 13, 1, 1, 25, 325, 3250, 22750, 22750, 3250, 325, 25, 1, 1, 46, 1150, 14950, 149500, 261625, 149500, 14950, 1150, 46, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 1;
1, 4, 4, 4, 4, 1;
1, 7, 28, 28, 28, 7, 1;
1, 10, 70, 280, 280, 70, 10, 1;
1, 13, 130, 910, 3640, 910, 130, 13, 1;
1, 25, 325, 3250, 22750, 22750, 3250, 325, 25, 1;
1, 46, 1150, 14950, 149500, 261625, 149500, 14950, 1150, 46, 1;
-
f[n_, q_]:= f[n, q]= If[n==0, 0, If[n<4, 1, f[n-1, q] +q*f[n-4, q]]];
c[n_, q_]:= Product[f[j, q], {j,n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n - k, q])];
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 08 2021 *)
-
@CachedFunction
def f(n,q): return 0 if (n==0) else 1 if (n<4) else f(n-1, q) + q*f(n-4, q)
def c(n,q): return product( f(j,q) for j in (1..n) )
def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 08 2021
Definition corrected to give integral terms,
G. C. Greubel, May 08 2021
Showing 1-3 of 3 results.
Comments