A172376 Triangle T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q)), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*(f(n-1, q) + f(n-2, q)), f(0, q) = 0, f(1, q) = 1, and q = 3, read by rows.
1, 1, 1, 1, 12, 1, 1, 180, 180, 1, 1, 2565, 38475, 2565, 1, 1, 36936, 7895070, 7895070, 36936, 1, 1, 530712, 1633531536, 23277824388, 1633531536, 530712, 1, 1, 7628985, 337399490610, 69234375473172, 69234375473172, 337399490610, 7628985, 1, 1, 109656180, 69713779364775, 205544107079102610, 2959835141939077584, 205544107079102610, 69713779364775, 109656180, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 12, 1; 1, 180, 180, 1; 1, 2565, 38475, 2565, 1; 1, 36936, 7895070, 7895070, 36936, 1; 1, 530712, 1633531536, 23277824388, 1633531536, 530712, 1;
Links
- G. C. Greubel, Rows n = 1..30 of the triangle, flattened
Programs
-
Mathematica
f[n_, q_]:= (-I*Sqrt[q])^(n-1)*ChebyshevU[n-1, I*Sqrt[q]/2]; c[n_, q_]:= Product[f[j, q], {j,n}]; T[n_, k_, q_]:= c[n-1, q]*c[n, q]/(c[k-1, q]^2*c[n-k, q]*c[n-k+1, q]*f[k, q]); Table[T[n, k, 3], {n,12}, {k, n}]//Flatten (* modified by G. C. Greubel, May 07 2021 *)
-
Sage
@CachedFunction def f(n,q): return (-i*sqrt(q))^(n-1)*chebyshev_U(n-1, i*sqrt(q)/2) def c(n,q): return product( f(j,q) for j in (1..n) ) def T(n,k,q): return c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q)) flatten([[T(n,k,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, May 07 2021
Formula
T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q)), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*(f(n-1, q) + f(n-2, q)), f(0, q) = 0, f(1, q) = 1, and q = 3.
T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k,q)), where c(n, q) = Product_{j=1..n} f(j, q), and f(n, q) = (-I*sqrt(q))^(n-1)*ChebyshevU(n-1, i*sqrt(q)/2). - G. C. Greubel, May 07 2021
Extensions
Edited by G. C. Greubel, May 07 2021