cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172383 a(0)=1, otherwise a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1,k)*a(n-1-2*k).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 19, 46, 118, 322, 903, 2653, 8053, 25194, 81387, 269667, 917529, 3197480, 11393821, 41497060, 154186653, 584151512, 2254240317, 8852998343, 35361762709, 143540660088, 591802631729, 2476701062087
Offset: 0

Views

Author

Paul Barry, Feb 01 2010

Keywords

Examples

			Eigensequence for number triangle
  1;
  1,  0;
  0,  1,  0;
  1,  0,  1,  0;
  0,  2,  0,  1,  0;
  1,  0,  3,  0,  1,  0;
  0,  3,  0,  4,  0,  1,  0;
  1,  0,  6,  0,  5,  0,  1,  0;
  0,  4,  0, 10,  0,  6,  0,  1,  0;
  1,  0, 10,  0, 15,  0,  7,  0,  1,  0;
  0,  5,  0, 20,  0, 21,  0,  8,  0,  1,  0;
(augmented version of Riordan array (1/(1-x^2), x/(1-x^2)), A030528.
		

Crossrefs

Cf. A030528.

Programs

  • Maple
    A172383 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            add(binomial(n-k-1,k)*procname(n-1-2*k),k=0..floor((n-1)/2)) ;
        end if;
    end proc:
    seq(A172383(n),n=0..20) ; # R. J. Mathar, Feb 11 2015
  • Mathematica
    a[n_]:= If[n == 0, 1, Sum[Binomial[n-k-1, k]*a[n-2*k-1], {k, 0, Floor[(n-1)/2]}]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Oct 07 2018 *)

Formula

G.f. A(x) satisfies: A(x) = 1 + (x/(1-x^2)) * A(x/(1-x^2)).

Extensions

Name corrected by R. J. Mathar, Feb 11 2015