A172383 a(0)=1, otherwise a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1,k)*a(n-1-2*k).
1, 1, 1, 2, 4, 8, 19, 46, 118, 322, 903, 2653, 8053, 25194, 81387, 269667, 917529, 3197480, 11393821, 41497060, 154186653, 584151512, 2254240317, 8852998343, 35361762709, 143540660088, 591802631729, 2476701062087
Offset: 0
Examples
Eigensequence for number triangle 1; 1, 0; 0, 1, 0; 1, 0, 1, 0; 0, 2, 0, 1, 0; 1, 0, 3, 0, 1, 0; 0, 3, 0, 4, 0, 1, 0; 1, 0, 6, 0, 5, 0, 1, 0; 0, 4, 0, 10, 0, 6, 0, 1, 0; 1, 0, 10, 0, 15, 0, 7, 0, 1, 0; 0, 5, 0, 20, 0, 21, 0, 8, 0, 1, 0; (augmented version of Riordan array (1/(1-x^2), x/(1-x^2)), A030528.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..932
Crossrefs
Cf. A030528.
Programs
-
Maple
A172383 := proc(n) option remember; if n = 0 then 1; else add(binomial(n-k-1,k)*procname(n-1-2*k),k=0..floor((n-1)/2)) ; end if; end proc: seq(A172383(n),n=0..20) ; # R. J. Mathar, Feb 11 2015
-
Mathematica
a[n_]:= If[n == 0, 1, Sum[Binomial[n-k-1, k]*a[n-2*k-1], {k, 0, Floor[(n-1)/2]}]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Oct 07 2018 *)
Formula
G.f. A(x) satisfies: A(x) = 1 + (x/(1-x^2)) * A(x/(1-x^2)).
Extensions
Name corrected by R. J. Mathar, Feb 11 2015