cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A172385 a(n) = 1 if n=0, otherwise Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k) *(-1)^k*a(n-1-2k).

Original entry on oeis.org

1, 1, 1, 0, -2, -4, -1, 14, 34, 2, -189, -439, 263, 3796, 6997, -14437, -96643, -106774, 671097, 2800836, 57519, -31088662, -82674287, 155322877, 1455331563, 1936970102, -14267868745, -66446614533, 19215003803, 1037638182571, 2654391633166, -8675836955120, -67833031653088
Offset: 0

Views

Author

Paul Barry, Feb 01 2010

Keywords

Examples

			Eigensequence for the number triangle
   1;
   1,   0;
   0,   1,   0;
  -1,   0,   1,   0;
   0,  -2,   0,   1,   0;
   1,   0,  -3,   0,   1,   0;
   0,   3,   0,  -4,   0,   1,   0;
  -1,   0,   6,   0,  -5,   0,   1,   0;
   0,  -4,   0,  10,   0,  -6,   0,   1,   0;
   1,   0, -10,   0,  15,   0,  -7,   0,   1,   0;
   0,   5,   0, -20,   0,  21,   0,  -8,   0,   1,   0;
(augmented version of Riordan array (1/(1+x^2), x/(1+x^2)).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, Sum[Binomial[n - k - 1, k]*(-1)^k*a[n - 2*k - 1], {k, 0, Floor[(n - 1)/2]}]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Oct 07 2018 *)

Formula

G.f.: A(x) = 1 + (x/(1+x^2))*A(x/(1+x^2)).

Extensions

Name corrected by G. C. Greubel, Oct 07 2018
Terms a(27) and beyond from Seiichi Manyama, Feb 25 2023

A360890 G.f. satisfies A(x) = 1 + x/(1 - x^3) * A(x/(1 - x^3)).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 7, 12, 25, 55, 115, 245, 564, 1331, 3103, 7407, 18388, 46198, 116503, 299966, 789426, 2095941, 5616114, 15299205, 42255533, 117689096, 331204936, 944052610, 2718150015, 7891518587, 23137661717, 68524545717, 204645635263, 616098009473
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\3, binomial(i-1-2*j, j)*v[i-3*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-1-2*k,k) * a(n-1-3*k).

A352864 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k,k) * a(n-2*k-1).

Original entry on oeis.org

1, 1, 1, 3, 6, 13, 34, 84, 230, 653, 1893, 5794, 18080, 58345, 193761, 657959, 2295398, 8177305, 29775086, 110676222, 419169483, 1617868052, 6353518921, 25376986471, 103017630200, 424704411564, 1777458163195, 7546547411488, 32490058003914, 141774055915497, 626739661952337
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - k, k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 30}]
    nmax = 30; A[] = 0; Do[A[x] = 1 + x A[x/(1 - x^2)]/(1 - x^2)^2 + O[x]^(nmax + 1) // Normal,nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - x^2)) / (1 - x^2)^2.

A360891 G.f. satisfies A(x) = 1 + x/(1 - x^4) * A(x/(1 - x^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 7, 11, 17, 32, 66, 132, 247, 463, 937, 2001, 4248, 8758, 18166, 39181, 87096, 193493, 425468, 942610, 2137196, 4930702, 11393809, 26280211, 61089849, 144157779, 343855549, 822430473, 1970839418, 4757600242, 11605042346, 28516751351
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, binomial(i-1-3*j, j)*v[i-4*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n-1-3*k,k) * a(n-1-4*k).
Showing 1-4 of 4 results.