A172424 Numbers k > 9 with digits different from 0 and 1 such that both the sum of digits and the product of digits divide k.
24, 36, 224, 432, 624, 735, 2232, 3276, 4224, 6624, 23328, 32832, 33264, 34272, 34992, 42336, 42624, 43632, 73332, 82944, 83232, 92232, 93744, 229392, 234432, 244224, 248832, 272832, 282624, 344736, 442368, 622272, 628224, 772632, 843264, 929232, 964224, 973728
Offset: 1
Examples
24 is a term since 4+2 = 6 and 2*4 = 8 divides 24. 36 is a term since 3+6 = 9 and 3*6 = 18 divides 36. 224 is a term since 2+2+4 = 8 and 2*2*4 = 32 divides 224. 23328 is a term since 2+3+3+2+8 = 18 and 2*3*3*2*8 = 288 divides 23328.
References
- Charles Ashbacher, Journal of Recreational Mathematics, Vol. 33 (2005), pp. 227.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 166, p. 53, Ellipses, Paris 2008.
- J.-M. De Koning & A. Mercier, Introduction à la théorie des nombres, Modulo, 2e édition, 1997
- J.-M. De Koning & A. Mercier, 1001 problèmes en théorie classique des nombres, Ellipses, Paris,2004
Links
- David A. Corneth, Table of n, a(n) for n = 1..10558 (terms <= 10^17).
- David A. Corneth, PARI program
- Eric Weisstein's World of Mathematics, Digit.
Programs
-
PARI
\\ See Corneth link
-
Python
from math import prod def ok(n): return n > 9 and {0,1}&set(d:=list(map(int, str(n)))) == set() and n%sum(d) == 0 and n%prod(d) == 0 print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Aug 13 2025
Extensions
Name edited and more terms from Michael S. Branicky, Aug 13 2025
Comments