A172431 Even row Pascal-square read by antidiagonals.
1, 1, 2, 1, 4, 3, 1, 6, 10, 4, 1, 8, 21, 20, 5, 1, 10, 36, 56, 35, 6, 1, 12, 55, 120, 126, 56, 7, 1, 14, 78, 220, 330, 252, 84, 8, 1, 16, 105, 364, 715, 792, 462, 120, 9, 1, 18, 136, 560, 1365, 2002, 1716, 792, 165, 10
Offset: 1
Examples
Array begins: 1, 2, 3, 4, 5, 6, ... 1, 4, 10, 20, 35, ... 1, 6, 21, 56, ... 1, 8, 36, ... 1, 10, ... 1, ... ... Example: Starting with 1, every entry is twice the one to the left minus the second one to the left, plus the one above. For n = 9 the a(9) = 10 solution is 2*4 - 1 + 3. From _Philippe Deléham_, Feb 24 2012: (Start) Triangle T(n,k) begins: 1; 1, 2; 1, 4, 3; 1, 6, 10, 4; 1, 8, 21, 20, 5; 1, 10, 36, 56, 35, 6; 1, 12, 55, 120, 126, 56, 7; (End) From _Philippe Deléham_, Mar 22 2012: (Start) (1, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, 1/2, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 4, 3, 0; 1, 6, 10, 4, 0; 1, 8, 21, 20, 5, 0; 1, 10, 36, 56, 35, 6, 0; 1, 12, 55, 120, 126, 56, 7, 0; (End)
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Crossrefs
Programs
-
GAP
F:=Factorial;; Flat(List([1..15], n-> List([1..n], k-> Sum([0..Int((k-1)/2)], j-> (-1)^j*F(n-j-1)*2^(k-2*j-1)/(F(j)*F(n-k)*F(k-2*j-1)) )))); # G. C. Greubel, Dec 15 2019
-
Magma
F:=Factorial; [ &+[(-1)^j*F(n-j-1)*2^(k-2*j-1)/(F(j)*F(n-k)*F(k-2*j-1)): j in [0..Floor((k-1)/2)]]: k in [1..n], n in [1..15]]; // G. C. Greubel, Dec 15 2019
-
Maple
T := (n, k) -> simplify(GegenbauerC(k, n-k, 1)): for n from 0 to 10 do seq(T(n,k), k=0..n-1) od; # Peter Luschny, May 10 2016
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A054142 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A172431 *) (* Clark Kimberling, Mar 09 2012 *) Table[GegenbauerC[k-1, n-k+1, 1], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 15 2019 *)
-
PARI
T(n,k) = sum(j=0, (k-1)\2, (-1)^j*(n-j-1)!*2^(k-2*j-1)/(j!*(n-k)!*(k-2*j-1)!) ); for(n=1, 10, for(k=1, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 15 2019
-
Sage
[[gegenbauer(k-1, n-k+1, 1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 15 2019
Formula
As a decimal sequence: a(n)= 12*a(n-1)- a(n-2) with a(1)=1. [I interpret this remark as: 1, 12=1,2, 143=1,4,3, 1704=1,6,10,4,... taken from A004191 are decimals on the diagonal. - R. J. Mathar, Sep 08 2013]
As triangle T(n,k): T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2). - Philippe Deléham, Feb 24 2012
As DELTA-triangle T(n,k) with 0<=k<=n: G.f.: (1-y*x)^2/((1-y*x)^2-x). - Philippe Deléham, Mar 22 2012
T(n, k) = GegenbauerC(k, n-k, 1). - Peter Luschny, May 10 2016
As triangle T(n,k): Product_{k=1..n} T(n,k) = Product_{k=0..n-1} binomial(2*k,k) = A007685(n-1) for n >= 1. - Werner Schulte, Apr 26 2017
As triangle T(n,k) with 1 <= k <= n: T(n,k) = binomial(2*n-k, k-1). - Paul Weisenhorn, Nov 25 2019
Comments