A172436 Smallest m such that the Moebius function takes successively, from m, n values 1,0,1,0,... ending with 1 or 0.
1, 15, 55, 159, 411, 411, 411, 3647, 15243, 15243, 15243, 113343, 1133759, 1133759, 1133759, 29149139
Offset: 1
Examples
a(3) = 55 since Moebius(55) = 1, Moebius(56) = 0, Moebius(57) = 1, and this pattern does not occur for any smaller value of n.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 826.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 161, #16.
- Deleglise, Marc and Rivat, Joel, Computing the summation of the Mobius function. Experiment. Math. 5 (1996), no. 4, 291-295.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 262 and 287.
Links
- Ed Pegg Jr., The Mobius function (and squarefree numbers)
- G. Villemin's Almanac of Numbers, Nombres de Moebius et de Mertens
- Eric Weisstein's World of Mathematics, Moebius Function.
Programs
-
PARI
a(n)=local(ok,m);m=1;while(1,ok=1;for(k=1,n,if(moebius(m+k-1)!=k%2,ok=0;break));if(ok,return(m));m++)
Extensions
Edited by Franklin T. Adams-Watters, May 15 2010
Comments