cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A172448 a(1) = 1, and for each n >=2, a(n) is the smallest number such that 1/cos(a(n)) < 1/cos(k) for all k < n, so that 1/cos(a(1)) > 1/cos(a(2)) > ... > 1/cos(a(n)) > ...

Original entry on oeis.org

1, 2, 8, 33, 344, 1054, 1764, 2474, 3184, 3894, 4604, 5314, 6024, 6734, 7444, 8154, 8864, 9574, 10284, 10994, 11704, 12414, 13124, 13834, 14544, 15254, 15964, 16674, 17384, 18094, 18804, 19514, 20224, 20934, 21644, 22354, 23064, 23774, 24484
Offset: 1

Views

Author

Michel Lagneau, Feb 03 2010

Keywords

Examples

			1/cos(1) = 1.8508157...,  1/cos(2) = -2.402997962...,  1/cos(8) = -6.8728506...
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 83, p. 29, Ellipses, Paris 2008. Also Entry 137, p. 47.

Crossrefs

Cf. A172446.

Programs

  • Maple
    a:= evalf(1/ cos(1)); for n from 2 to 10000000 do; if a > evalf(1/cos(n)) then a:= evalf(1/cos(n)); print(n); else fi ; od;
  • Mathematica
    am = 2; s = {}; Do[a = 1/Cos[n]; If[a < am, am = a; AppendTo[s, n]], {n, 1, 10^4}]; s (* Amiram Eldar, Aug 16 2019 *)

A172451 a(1) = 1, and for each n >= 2, a(n) is the smallest number such that 1/sin(a(n)) < 1/sin(a(k)) for all k < n, so that 1/sin(a(1)) > 1/sin(a(2)) > ... > 1/sin(a(n)) > ...

Original entry on oeis.org

1, 2, 4, 6, 22, 333, 355, 103993, 104348, 1042060, 1146408, 4272943, 5419351, 80143857
Offset: 1

Views

Author

Michel Lagneau, Feb 03 2010

Keywords

Examples

			1/sin(1) = 1.1883951; 1/sin(2) = 1.0997501; 1/sin(4) = - 1.3213487.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 83, p. 29, Ellipses, Paris 2008. Also Entry 137, p. 47.

Crossrefs

Programs

  • Maple
    a:= evalf(1/sin(1)); for n from 2 to 10000000 do; if a > evalf(1/sin(n)) then a:= evalf(1/sin(n)); print(n); else fi ; od;
  • Mathematica
    vm = 2; s = {}; Do[v = 1/Sin[n]; If[v < vm, vm = v; AppendTo[s, n]], {n, 1, 110000}]; s (* Amiram Eldar, Aug 10 2019 *)
  • PARI
    lista(NN) = {my(x=2); for(k=1, NN, if(1/sin(k)Jinyuan Wang, Aug 12 2019

Extensions

a(13) corrected and a(14) added by Amiram Eldar, Aug 10 2019
Showing 1-2 of 2 results.