A172453 Triangle T(n, k) = round( A172452(n)/(A172452(k)*A172452(n-k)) ), read by rows.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 6, 6, 3, 1, 1, 4, 12, 12, 12, 4, 1, 1, 4, 16, 24, 24, 16, 4, 1, 1, 4, 16, 32, 48, 32, 16, 4, 1, 1, 5, 20, 40, 80, 80, 40, 20, 5, 1, 1, 6, 30, 60, 120, 160, 120, 60, 30, 6, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 2, 4, 2, 1; 1, 3, 6, 6, 3, 1; 1, 4, 12, 12, 12, 4, 1; 1, 4, 16, 24, 24, 16, 4, 1; 1, 4, 16, 32, 48, 32, 16, 4, 1; 1, 5, 20, 40, 80, 80, 40, 20, 5, 1; 1, 6, 30, 60, 120, 160, 120, 60, 30, 6, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
f[n_]:= f[n]= If[n<3, Fibonacci[n], f[f[n-1]] + f[n-f[n-1]]]; (* f=A004001 *) c[n_]:= Product[f[j], {j,n}]; (* c=A172452 *) T[n_, k_]:= Round[c[n]/(c[k]*c[n-k])]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
-
Sage
@CachedFunction def b(n): return fibonacci(n) if (n<3) else b(b(n-1)) + b(n-b(n-1)) # b=A004001 def c(n): return product(b(j) for j in (1..n)) # c=A172452 def T(n,k): return round(c(n)/(c(k)*c(n-k))) [[T(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Apr 27 2021
Formula
Extensions
Definition changed to give integral terms and edited by G. C. Greubel, Apr 27 2021
Comments