cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A172453 Triangle T(n, k) = round( A172452(n)/(A172452(k)*A172452(n-k)) ), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 6, 6, 3, 1, 1, 4, 12, 12, 12, 4, 1, 1, 4, 16, 24, 24, 16, 4, 1, 1, 4, 16, 32, 48, 32, 16, 4, 1, 1, 5, 20, 40, 80, 80, 40, 20, 5, 1, 1, 6, 30, 60, 120, 160, 120, 60, 30, 6, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 03 2010

Keywords

Comments

The original definition of this sequence did not produce an integer valued triangular sequence. The application of the "round" function was the method chosen to formulate an integer sequence. - G. C. Greubel, Apr 27 2021

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,  1;
  1, 2,  4,  2,   1;
  1, 3,  6,  6,   3,   1;
  1, 4, 12, 12,  12,   4,   1;
  1, 4, 16, 24,  24,  16,   4,  1;
  1, 4, 16, 32,  48,  32,  16,  4,  1;
  1, 5, 20, 40,  80,  80,  40, 20,  5, 1;
  1, 6, 30, 60, 120, 160, 120, 60, 30, 6, 1;
		

Crossrefs

Programs

  • Mathematica
    f[n_]:= f[n]= If[n<3, Fibonacci[n], f[f[n-1]] + f[n-f[n-1]]]; (* f=A004001 *)
    c[n_]:= Product[f[j], {j,n}]; (* c=A172452 *)
    T[n_, k_]:= Round[c[n]/(c[k]*c[n-k])];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
  • Sage
    @CachedFunction
    def b(n): return fibonacci(n) if (n<3) else b(b(n-1)) + b(n-b(n-1)) # b=A004001
    def c(n): return product(b(j) for j in (1..n)) # c=A172452
    def T(n,k): return round(c(n)/(c(k)*c(n-k)))
    [[T(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Apr 27 2021

Formula

T(n, k) = round( A172452(n)/(A172452(k)*A172452(n-k)) ).
T(n, k) = round( c(n)/(c(k)*c(n-k)) ) where c(n) = Product_{j=1..n} A004001(j) with c(0) = 1.

Extensions

Definition changed to give integral terms and edited by G. C. Greubel, Apr 27 2021

A172970 Triangle T(n, k) = A172452(n) - A172452(k) - A172452(n-k), read by rows.

Original entry on oeis.org

-1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, 1, 2, 1, -1, -1, 7, 9, 9, 7, -1, -1, 35, 43, 44, 43, 35, -1, -1, 143, 179, 186, 186, 179, 143, -1, -1, 575, 719, 754, 760, 754, 719, 575, -1, -1, 3071, 3647, 3790, 3824, 3824, 3790, 3647, 3071, -1, -1, 19199, 22271, 22846, 22988, 23016, 22988, 22846, 22271, 19199, -1
Offset: 0

Views

Author

Roger L. Bagula, Feb 06 2010

Keywords

Comments

Row sums are: {-1, -2, -3, -2, 2, 30, 198, 1014, 4854, 28662, 197622, ...}.

Examples

			Triangle begins as:
  -1;
  -1,    -1;
  -1,    -1,    -1;
  -1,     0,     0,    -1;
  -1,     1,     2,     1,    -1;
  -1,     7,     9,     9,     7,    -1;
  -1,    35,    43,    44,    43,    35,    -1;
  -1,   143,   179,   186,   186,   179,   143,    -1;
  -1,   575,   719,   754,   760,   754,   719,   575,    -1;
  -1,  3071,  3647,  3790,  3824,  3824,  3790,  3647,  3071,    -1;
  -1, 19199, 22271, 22846, 22988, 23016, 22988, 22846, 22271, 19199, -1;
		

Crossrefs

Programs

  • Mathematica
    f[n_]:= f[n]= If[n<3, Fibonacci[n], f[f[n-1]] + f[n-f[n-1]]]; (* f=A004001 *)
    c[n_]:= Product[f[j], {j,n}]; (* c=A172452 *)
    T[n_, k_]:= c[n] - c[k] - c[n-k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
  • Sage
    @CachedFunction
    def b(n): return fibonacci(n) if (n<3) else b(b(n-1)) + b(n-b(n-1)) # b=A004001
    def c(n): return product(b(j) for j in (1..n)) # c=A172452
    def T(n,k): return c(n) - c(k) - c(n-k)
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 27 2021

Formula

T(n, k) = A172452(n) - A172452(k) - A172452(n-k).
T(n, k) = c(n) - c(k) - c(n-k) where c(n) = Product_{j=1..n} A004001(j).

Extensions

Edited by G. C. Greubel, Apr 27 2021
Showing 1-2 of 2 results.