A172456 Primes p such that (p, p+2, p+6, p+12, p+14, p+20) is a prime sextuple.
17, 1277, 1607, 3527, 4637, 71327, 97367, 113147, 191447, 290657, 312197, 416387, 418337, 421697, 450797, 566537, 795647, 886967, 922067, 1090877, 1179317, 1300127, 1464257, 1632467, 1749257, 1866857, 1901357, 2073347, 2322107
Offset: 1
Keywords
Examples
The first two terms correspond to the sextuples (17,19,23,29,31,37) and (1277,1279,1283,1289,1291,1297).
References
- R. K. Guy, Unsolved Problems in Number Theory, E30.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- G. E. Andrews, MacMahon's prime numbers of measurement, Amer. Math. Monthly, 82 (1975), 922-923.
- T. Forbes, Prime k-tuplets
- R. L. Graham and C. B. A. Peck, Problem E1910, Amer. Math. Monthly, 75 (1968), 80-81.
- P. A. MacMahon, The prime numbers of measurement on a scale, Proc. Camb. Phil. Soc. 21 (1923), 651-654; reprinted in Coll. Papers I, pp. 797-800.
- Eric Weisstein's World of Mathematics, Prime Triplet.
Programs
-
Maple
for n from 1 by 2 to 400000 do; if isprime(n) and isprime(n+2) and isprime(n+6) and isprime(n+12) and isprime(n + 14) and isprime(n+20) then print(n) else fi;od;
-
Mathematica
Select[Prime[Range[171000]],And@@PrimeQ[{#+2,#+6,#+12,#+14,#+20}]&] (* Harvey P. Dale, Jul 23 2011 *) Select[Prime[Range[171000]],AllTrue[#+{2,6,12,14,20},PrimeQ]&] (* or *) Select[ Partition[Prime[Range[171000]],6,1],Differences[#]=={2,4,6,2,6}&][[All,1]] (* Harvey P. Dale, Sep 04 2022 *)
Comments