A172464 Numbers n such that phi(phi(n)) + sigma(sigma(n)) is a 4th power.
9, 42, 101, 339, 407, 420, 471, 915, 1409, 2572, 2847, 3706, 4069, 6631, 6720, 7229, 9212, 14051, 16641, 31453, 33067, 33146, 35701, 37425, 37675, 37911, 48016, 48272, 53101, 55956, 56906, 68895, 73474, 75023, 83525, 84676, 86928, 94525, 101428, 101743, 115925
Offset: 1
Keywords
Examples
phi(phi(9)) + sigma(sigma(9))= 1; phi(phi(42)) + sigma(sigma(42))= 4^4 = 256; phi(phi(101)) + sigma(sigma(101))= 4^4 = 256; phi(phi(339)) + sigma(sigma(339))= 6^4 = 1296.
References
- W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
- S. W. Golomb, Equality among number-theoretic functions, Abstract 882-11-16, Abstracts Amer. Math. Soc., 14 (1993), 415-416.
- R. K. Guy, Unsolved Problems in Number Theory, B42.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..5749
- K. Ford, The distribution of totients, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 27-34.
- Eric Weisstein's World of Mathematics, Totient Valence Function
- Eric Weisstein's World of Mathematics, Carmichael's Totient Function conjecture
Programs
-
Maple
with(numtheory): for n from 1 to 2000000 do;if floor(( phi(phi(n)) + sigma(sigma(n)))^.25) =( phi(phi(n)) + sigma(sigma(n)))^.25 then print (n);fi ; od;
-
Mathematica
Select[Range[116000],IntegerQ[Surd[DivisorSigma[1,DivisorSigma[1,#]]+ EulerPhi[ EulerPhi[ #]],4]]&] (* Harvey P. Dale, Aug 16 2021 *)
Extensions
a(40)-a(41) from Hiroaki Yamanouchi, Sep 19 2014