A172990 a(n) is the smallest k such that the two numbers n^3 +- k are primes.
3, 4, 3, 12, 17, 6, 9, 10, 9, 30, 5, 54, 33, 14, 3, 24, 11, 168, 81, 20, 9, 60, 17, 18, 3, 80, 9, 18, 73, 192, 75, 14, 63, 54, 7, 54, 255, 38, 303, 42, 11, 114, 63, 4, 33, 180, 5, 30, 93, 28, 21, 84, 115, 18, 15, 40, 9, 228, 61, 318, 171, 4, 93, 42, 5, 24, 9, 70, 51, 72, 49, 444, 3
Offset: 2
Keywords
Examples
Both 2^3 - 3 = 5 and 2^3 + 3 = 11 are prime, and there is no positive number k < 3 for which this is the case, so a(2) = 3; similarly, both 3^3 - 4 = 23 and 3^3 + 4 = 31 are prime; both 4^3 - 3 = 61 and 4^3 + 3 = 67 are prime; both 5^3 - 12 = 113 and 5^3 + 12 = 137 are prime.
Links
- Marius A. Burtea, Table of n, a(n) for n = 2..5001
Crossrefs
Cf. A172989
Programs
-
MATLAB
m=1; for n=2:80 for k=1:1000 if and(isprime(n^3-k)==1, isprime(n^3+k)==1) sol(m)=k; m=m+1; break; end; end; end; sol % Marius A. Burtea, Jul 31 2019
-
Magma
sol:=[]; for m in [2..80] do k:=1; while k le 1000 and not(IsPrime(m^3-k) and IsPrime(m^3+k)) do k:=k+1; end while; sol[m-1]:=k; end for; sol; // Marius A. Burtea, Jul 31 2019
-
Mathematica
f[n_]:=Block[{k},If[OddQ[n],k=2,k=1];While[ !PrimeQ[n-k]||!PrimeQ[n+k],k+=2];k];Table[f[n^3],{n,2,40}]
Extensions
Name and Example section edited by Jon E. Schoenfield, Jul 31 2019