cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172991 Triangle of binomial sums read by rows: T(n,k) = sum(C(2n-2k-i,i) * C(2k-i,i), i=0..min(k,n-k)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 6, 1, 1, 8, 22, 22, 8, 1, 1, 10, 37, 63, 37, 10, 1, 1, 12, 56, 136, 136, 56, 12, 1, 1, 14, 79, 249, 376, 249, 79, 14, 1, 1, 16, 106, 410, 849, 849, 410, 106, 16, 1, 1, 18, 137, 627, 1663, 2317, 1663, 627, 137, 18, 1, 1, 20, 172, 908, 2942, 5371, 5371, 2942, 908, 172, 20, 1, 1, 22, 211, 1261, 4826, 11017, 14545, 11017, 4826, 1261, 211, 22, 1
Offset: 0

Views

Author

Emanuele Munarini, Apr 07 2011

Keywords

Comments

The matrix inverse starts
1;
-1,1;
1,-2,1;
-1,4,-4,1;
0,-8,13,-6,1;
7,12,-38,26,-8,1;
-35,-12,114,-101,43,-10,1; - R. J. Mathar, Mar 22 2013

Examples

			G.f. =
1 +
(y + 1)*x +
(y^2 + 2*y + 1)*x^2 +
(y^3 + 4*y^2 + 4*y + 1)*x^3 +
(y^4 + 6*y^3 + 11*y^2 + 6*y + 1)*x^4 + ...
Triangle begins:
1,
1,  1,
1,  2,  1,
1,  4,  4,   1,
1,  6, 11,   6,   1,
1,  8, 22,  22,   8,   1,
1, 10, 37,  63,  37,  10,  1,
1, 12, 56, 136, 136,  56, 12,  1,
1, 14, 79, 249, 376, 249, 79, 14,  1
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[Binomial[2n-2k-i,i]Binomial[2k-i,i],{i,0,Min[k,n-k]}],{n,0,12},{k,0,n}]]
  • Maxima
    create_list(sum(binomial(2*n-2*k-i,i)*binomial(2*k-i,i),i,0,min(k,n-k)),n,0,10,k,0,n);

Formula

G.f.: (1 -x -x*y -2*x^2*y +x^3*y +x^3*y^2 +4*x^4*y^2 -x^6*y^3) / (1 -2*x +x^2 -2*x*y+2*x^3*y +x^2*y^2 +2*x^3*y^2 +3*x^4*y^2 -2*x^5*y^2 -2*x^5*y^3 -6*x^6*y^3 +x^8*y^4).
Central coefficients T(2n,n) = A188648.