A172991 Triangle of binomial sums read by rows: T(n,k) = sum(C(2n-2k-i,i) * C(2k-i,i), i=0..min(k,n-k)).
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 6, 1, 1, 8, 22, 22, 8, 1, 1, 10, 37, 63, 37, 10, 1, 1, 12, 56, 136, 136, 56, 12, 1, 1, 14, 79, 249, 376, 249, 79, 14, 1, 1, 16, 106, 410, 849, 849, 410, 106, 16, 1, 1, 18, 137, 627, 1663, 2317, 1663, 627, 137, 18, 1, 1, 20, 172, 908, 2942, 5371, 5371, 2942, 908, 172, 20, 1, 1, 22, 211, 1261, 4826, 11017, 14545, 11017, 4826, 1261, 211, 22, 1
Offset: 0
Examples
G.f. = 1 + (y + 1)*x + (y^2 + 2*y + 1)*x^2 + (y^3 + 4*y^2 + 4*y + 1)*x^3 + (y^4 + 6*y^3 + 11*y^2 + 6*y + 1)*x^4 + ... Triangle begins: 1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 6, 1, 1, 8, 22, 22, 8, 1, 1, 10, 37, 63, 37, 10, 1, 1, 12, 56, 136, 136, 56, 12, 1, 1, 14, 79, 249, 376, 249, 79, 14, 1
Programs
-
Mathematica
Flatten[Table[Sum[Binomial[2n-2k-i,i]Binomial[2k-i,i],{i,0,Min[k,n-k]}],{n,0,12},{k,0,n}]]
-
Maxima
create_list(sum(binomial(2*n-2*k-i,i)*binomial(2*k-i,i),i,0,min(k,n-k)),n,0,10,k,0,n);
Formula
G.f.: (1 -x -x*y -2*x^2*y +x^3*y +x^3*y^2 +4*x^4*y^2 -x^6*y^3) / (1 -2*x +x^2 -2*x*y+2*x^3*y +x^2*y^2 +2*x^3*y^2 +3*x^4*y^2 -2*x^5*y^2 -2*x^5*y^3 -6*x^6*y^3 +x^8*y^4).
Central coefficients T(2n,n) = A188648.
Comments