cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A054142 Triangular array binomial(2*n-k, k), k=0..n, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 15, 10, 1, 1, 9, 28, 35, 15, 1, 1, 11, 45, 84, 70, 21, 1, 1, 13, 66, 165, 210, 126, 28, 1, 1, 15, 91, 286, 495, 462, 210, 36, 1, 1, 17, 120, 455, 1001, 1287, 924, 330, 45, 1, 1, 19, 153, 680, 1820, 3003, 3003, 1716, 495, 55, 1
Offset: 0

Views

Author

Keywords

Comments

Row sums are odd-indexed Fibonacci numbers.
T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k double rises. Mirror image of A085478. - Emeric Deutsch, May 31 2004
Diagonal sums are A052535. - Paul Barry, Jan 21 2005
Matrix inverse is the triangle of Salie numbers A098435. - Paul Barry, Jan 21 2005
Coefficients of Morgan-Voyce polynomial b(n,x); e.g., b(3,x)=x^3+5x^2+6x+1. See A172431 for coefficients of Morgan-Voyce polynomial B(n,x). - Clark Kimberling, Feb 13 2010
T(n,k) is the number of stack polyominoes of perimeter 2n+4 with k+1 columns. - Emanuele Munarini, Apr 07 2011
Roots of signed n-th polynomials are chaotic with respect to the operation (-2, x^2), with cycle lengths A003558(n). Example: starting with a root to x^3 - 5x^2 + 6x - 1 = 0; (2 + 2*cos(2*Pi/N) = 3.24697... = A116415; we obtain the trajectory (3.24697...-> 1.55495...-> 0.198062...; the 3 roots to the polynomial with cycle length 3 matching A003558(3) = 3. The operation (-2, x^2) is the reversal of the well known chaotic operation (x^2 - 2) [Kappraff, Adamson, 2004] starting with seed 2*cos(2*Pi/N). Check: given 2*cos(2*Pi/7) = 1.24697..., we obtain the 3-cycle using (x^2 - 2): (1.24697...-> -0.445041...-> 1.801937...; where the terms in either set are intermediate terms in the other, irrespective of sign. - Gary W. Adamson, Sep 22 2011
A054142 is jointly generated with A172431 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=x*u(n-1,x)+v(n-1,x) and v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section of A172431. - Clark Kimberling, Mar 09 2012
Subtriangle of the triangle given by (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 01 2012
The o.g.f. for row n of the array A(n, k) = binomial(2*n-k,k), k >= 0, n >= 0 is G(n,x) = Sum_{k=0..n} T(n, k)*x^k + (-x)^(2*n+1) * c(-x)^(2*n+1) / sqrt(1-4*(-x)), for n >= 0. Here c(x) is the o.g.f. of A000108 (Catalan). For powers of c(x) see the W. Lang link in A115139. For the alternating sign case replace x by -x. - Wolfdieter Lang, Sep 12 2016
Multiplying the n-th diagonal by A001147(n) generates A001497. - Tom Copeland, Oct 04 2016

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,  1;
  1,  5,  6,   1;
  1,  7, 15,  10,   1;
  1,  9, 28,  35,  15,   1;
  1, 11, 45,  84,  70,  21,   1;
  1, 13, 66, 165, 210, 126,  28,  1;
  1, 15, 91, 286, 495, 462, 210, 36, 1; ...
...
(0, 1, 0, 0, 0, 0, ...) DELTA (1, 0, 1, 0, 0, 0, ...) begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 3,  1;
  0, 1, 5,  6,  1;
  0, 1, 7, 15, 10,  1;
  0, 1, 9, 28, 35, 15, 1. _Philippe Deléham_, Apr 01 2012
		

Crossrefs

These are the even-indexed rows of A011973, the odd-indexed rows form A053123.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n-k,k) ))); # G. C. Greubel, Aug 01 2019
  • Magma
    [Binomial(2*n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Maple
    T:=(n,k)->binomial(2*n-k,k): seq(seq(T(n,k), k=0..n), n=0..11);
  • Mathematica
    Flatten[Table[Binomial[2n - k, k], {n, 0, 11}, {k, 0, n}]] (* Emanuele Munarini, Apr 07 2011 *)
  • Maxima
    create_list(binomial(2*n-k,k),n,0,10,k,0,n); /* Emanuele Munarini, Apr 07 2011 */
    
  • PARI
    T(n,k)=if(n<0,0,polcoeff(charpoly(matrix(n,n,i,j,-min(i,j))),k))
    
  • Sage
    [[binomial(2*n-k,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

G.f.: (1-t*z)/((1-t*z)^2-z). - Emeric Deutsch, May 31 2004
Column k has g.f.: (Sum_{j=0..k+1} binomial(k+1, 2j)*x^j)*x^k/(1-x)^(k+1). - Paul Barry, Jun 22 2005
Recurrence: T(n+2,k+2) = T(n+1,k+2) + 2*T(n+1,k+1) - T(n,k). - Emanuele Munarini, Apr 07 2011
T(n, k) = binomial(2*n-k, k) = A085478(n, n-k), for n >= 0, k = 0..n. - Wolfdieter Lang, Mar 25 2020

A188648 Binomial sums a(n) = Sum_{k=0..n} (binomial(2n-k,k))^2.

Original entry on oeis.org

1, 2, 11, 63, 376, 2317, 14545, 92512, 594169, 3844787, 25027296, 163701327, 1075049011, 7083830648, 46812088751, 310118453573, 2058919125662, 13695571200353, 91254952276859, 608960974528058, 4069232436916151
Offset: 0

Views

Author

Emanuele Munarini, Apr 07 2011

Keywords

Comments

Central coefficients of A172991.
Bisection of A051286 (Whitney number of level n of the lattice of the ideals of the fence of order 2n). - Paul D. Hanna, Apr 07 2011

Crossrefs

Sum_{k=0..n} (binomial(2n-k,k))^b: A122367(n) = A001519(n+1) (b=1), this sequence (b=2).

Programs

  • Mathematica
    Table[Sum[Binomial[2n-k,k]^2,{k,0,n}],{n,0,20}]
    Table[DifferenceRoot[Function[{y, m}, {4 (-m + n)^2 (-1 - 2 m + 2 n)^2 y[m] + (-5 m^2 - 18 m^3 - 17 m^4 + 12 m n + 56 m^2 n + 68 m^3 n - 8 n^2 - 56 m n^2 - 100 m^2 n^2 + 16 n^3 + 64 m n^3 - 16 n^4) y[1 + m] + (1 + m)^2 (-m + 2 n)^2 y[2 + m] == 0, y[0] == 0, y[1] == 1}]][n + 1], {n, 0, 20}] (* Benedict W. J. Irwin, Nov 03 2016 *)
  • Maxima
    makelist(sum(binomial(2*n-k,k)^2,k,0,n),n,0,20);
    
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n-k, k)^2)} \\ Seiichi Manyama, Jan 13 2019

Formula

G.f.: 1/2*(1/sqrt(1-2*sqrt(x)-x-2*x*sqrt(x)+x^2) + 1/sqrt(1+2*sqrt(x)-x+2*x*sqrt(x)+x^2)).
Recurrence: (n-2)*n*(2*n - 1)*(48*n^2 - 192*n + 169)*a(n) = (576*n^5 - 4032*n^4 + 10212*n^3 - 11414*n^2 + 5457*n - 849)*a(n-1) + 5*(2*n - 3)*(48*n^4 - 288*n^3 + 565*n^2 - 399*n + 64)*a(n-2) + (576*n^5 - 4608*n^4 + 13668*n^3 - 18286*n^2 + 10521*n - 1896)*a(n-3) - (n-3)*(n-1)*(2*n - 5)*(48*n^2 - 96*n + 25)*a(n-4). - Vaclav Kotesovec, Mar 02 2014
a(n) ~ phi^(4*n + 2) / (2^(3/2) * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 02 2014, simplified Jan 13 2019
Conjecture: a(n) = hypergeom([-n,-n,n+1,n+1], [1/2,1/2,1], 1/16). - Velin Yanev, Oct 31 2019
a(n) = A051286(2*n). - Mark van Hoeij, Sep 05 2022

A027989 a(n) = self-convolution of row n of array T given by A027926.

Original entry on oeis.org

1, 3, 10, 33, 105, 324, 977, 2895, 8462, 24465, 70101, 199368, 563425, 1583643, 4430290, 12342849, 34262337, 94800780, 261545777, 719697255, 1975722326, 5412138033, 14796520365, 40380240528, 110016825025, 299285288499, 813011578522, 2205652007265, 5976479585817
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of all columns in stack polyominoes of perimeter 2n+4. - Emanuele Munarini, Apr 07 2011

Crossrefs

Programs

  • Mathematica
    Table[((5+4n)Fibonacci[1+2n]-(1+2n)Fibonacci[2n])/5,{n,0,28}] (* Emanuele Munarini, Apr 07 2011 *)
  • Maxima
    makelist(((5+4*n)*fib(1+2*n)-(1+2*n)*fib(2*n))/5,n,0,20); /* Emanuele Munarini, Apr 07 2011 */
    
  • PARI
    Vec((1-3*x+3*x^2)/(1-3*x+x^2)^2+O(x^66)) /* Joerg Arndt, Apr 08 2011 */

Formula

a(n) = (2/5)*(n + 1)*F(2*n+3) + (1/5)*F(2*n+2) - (4/5)*(n + 1)*F(2*n), where F(n) = A000045(n). - Ralf Stephan, May 13 2004
From Emanuele Munarini, Apr 07 2011: (Start)
a(n) = ((4*n + 5)*F(2*n+1) - (2*n + 1)*F(2*n))/5, where F(n) = A000045(n).
a(n) = Sum_{k=0..n} binomial(2*n-k, k)*(k + 1).
G.f.: (1 - 3*x + 3*x^2)/(1 - 3*x + x^2)^2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). (End)
Showing 1-3 of 3 results.