cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173005 A product triangle sequence based on recursion:a=4; f(n,a)=(2*a+1)*f(n-1,a)+f(n-2,a).

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 80, 80, 1, 1, 711, 6320, 711, 1, 1, 6319, 499201, 499201, 6319, 1, 1, 56160, 39430560, 350439102, 39430560, 56160, 1, 1, 499121, 3114515040, 246007756722, 246007756722, 3114515040, 499121, 1, 1, 4435929, 246007257601
Offset: 0

Views

Author

Roger L. Bagula, Feb 07 2010

Keywords

Comments

Row sums are:
{1, 2, 11, 162, 7744, 1011042, 429412544, 498245541768, 1880728607247424,
19394268001029953928, 650631110504313946320896,...}.
a = 1; A034801.
a = 2; A156600.
a = 3; A156602.
This result seems to connect these new recursions directly to q-forms.

Examples

			{1},
{1, 1},
{1, 9, 1},
{1, 80, 80, 1},
{1, 711, 6320, 711, 1},
{1, 6319, 499201, 499201, 6319, 1},
{1, 56160, 39430560, 350439102, 39430560, 56160, 1},
{1, 499121, 3114515040, 246007756722, 246007756722, 3114515040, 499121, 1},
{1, 4435929, 246007257601, 172697094835902, 1534842394188558, 172697094835902, 246007257601, 4435929, 1},
{1, 39424240, 19431458835440, 121233114567545603, 9575881454449171680, 9575881454449171680, 121233114567545603, 19431458835440, 39424240, 1},
{1, 350382231, 1534839240742160, 85105473729326613333, 59743922859711995180563, 530973050767752120484320, 59743922859711995180563, 85105473729326613333, 1534839240742160, 350382231, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[f, c, a, t];
    f[0, a_] := 0; f[1, a_] := 1;
    f[n_, a_] := f[n, a] = (2*a + 1)*f[n - 1, a] - f[n - 2, a];
    c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
    t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
    Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]

Formula

a=4; f(n,a)=(2*a+1)*f(n-1,a)+f(n-2,a);
c(n)=If[n == 0, 1, Product[f(i, a), {i, 1, n}]];
t(n,m)=c(n)/(c(m)*c(n-m)