A173020 Triangle of Generalized Runyon numbers R_{n,k}^(3) read by rows.
1, 1, 3, 1, 9, 12, 1, 18, 66, 55, 1, 30, 210, 455, 273, 1, 45, 510, 2040, 3060, 1428, 1, 63, 1050, 6650, 17955, 20349, 7752, 1, 84, 1932, 17710, 74382, 148764, 134596, 43263, 1, 108, 3276, 40950, 245700, 753480, 1184040, 888030, 246675, 1, 135, 5220, 85260, 690606, 2992626, 7125300, 9161100, 5852925, 1430715
Offset: 1
Examples
The triangle starts in row n=1 as 1; 1, 3; 1, 9, 12; 1, 18, 66, 55; 1, 30, 210, 455, 273; 1, 45, 510, 2040, 3060, 1428; 1, 63, 1050, 6650, 17955, 20349, 7752; 1, 84, 1932, 17710, 74382, 148764, 134596, 43263;
References
- Chunwei Song, The Generalized Schroeder Theory, El. J. Combin. 12 (2005) #R53
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014-2020. See Fig. 6.
- Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See p. 20.
Crossrefs
Programs
-
Magma
A173020:= func< n,k,m | Binomial(n,k)*Binomial(m*n,k-1)/n >; [A173020(n,k,3): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 20 2021
-
Mathematica
T[n_, k_, m_]:= Binomial[n, k]*Binomial[m*n, k-1]/n; Table[T[n, k, 3], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
-
Sage
def A173020(n,k,m): return binomial(n,k)*binomial(m*n,k-1)/n flatten([[A173020(n,k,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 20 2021
Formula
T(n, k) = R(n,k,3) with R(n,k,m)= binomial(n,k)*binomial(m*n,k-1)/n, 1<=k<=n.
T(n, n) = A001764(n).
T(n, n-1) = A003408(n-2).
T(n, 2) = A045943(n-1).
T(n, 3) = n*(n-1)*(n-2)*(3*n-1)/4 = 3*A052149(n-1).
O.g.f. is series reversion with respect to x of x/((1+x)*(1+x*u)^3). - Peter Bala, Sep 12 2012
Sum_{k=1..n} T(n, k, 3) = binomial(4*n, n)/(3*n+1) = A002293(n). - G. C. Greubel, Feb 20 2021
n-th row polynomial = x * hypergeom([1 - n, -3*n], [2], x). - Peter Bala, Aug 30 2023
Comments