cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173020 Triangle of Generalized Runyon numbers R_{n,k}^(3) read by rows.

Original entry on oeis.org

1, 1, 3, 1, 9, 12, 1, 18, 66, 55, 1, 30, 210, 455, 273, 1, 45, 510, 2040, 3060, 1428, 1, 63, 1050, 6650, 17955, 20349, 7752, 1, 84, 1932, 17710, 74382, 148764, 134596, 43263, 1, 108, 3276, 40950, 245700, 753480, 1184040, 888030, 246675, 1, 135, 5220, 85260, 690606, 2992626, 7125300, 9161100, 5852925, 1430715
Offset: 1

Views

Author

R. J. Mathar, Nov 08 2010

Keywords

Comments

The Runyon numbers R_{n,k}^(1) are A001263, R_{n,k}^(2) are A108767.
Row sums are in A002293.

Examples

			The triangle starts in row n=1 as
  1;
  1,  3;
  1,  9,   12;
  1, 18,   66,    55;
  1, 30,  210,   455,   273;
  1, 45,  510,  2040,  3060,   1428;
  1, 63, 1050,  6650, 17955,  20349,   7752;
  1, 84, 1932, 17710, 74382, 148764, 134596, 43263;
		

References

  • Chunwei Song, The Generalized Schroeder Theory, El. J. Combin. 12 (2005) #R53

Crossrefs

Cf. A010054 (m=0), A001263 (m=1), A108767 (m=2), this sequence (m=3).

Programs

  • Magma
    A173020:= func< n,k,m | Binomial(n,k)*Binomial(m*n,k-1)/n >;
    [A173020(n,k,3): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 20 2021
  • Mathematica
    T[n_, k_, m_]:= Binomial[n, k]*Binomial[m*n, k-1]/n;
    Table[T[n, k, 3], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
  • Sage
    def A173020(n,k,m): return binomial(n,k)*binomial(m*n,k-1)/n
    flatten([[A173020(n,k,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 20 2021
    

Formula

T(n, k) = R(n,k,3) with R(n,k,m)= binomial(n,k)*binomial(m*n,k-1)/n, 1<=k<=n.
T(n, n) = A001764(n).
T(n, n-1) = A003408(n-2).
T(n, 2) = A045943(n-1).
T(n, 3) = n*(n-1)*(n-2)*(3*n-1)/4 = 3*A052149(n-1).
O.g.f. is series reversion with respect to x of x/((1+x)*(1+x*u)^3). - Peter Bala, Sep 12 2012
Sum_{k=1..n} T(n, k, 3) = binomial(4*n, n)/(3*n+1) = A002293(n). - G. C. Greubel, Feb 20 2021
n-th row polynomial = x * hypergeom([1 - n, -3*n], [2], x). - Peter Bala, Aug 30 2023