A173048 Triangle T(n, k) = [x^k](p(x, n, q)) where p(x,n,q) = Product_{j=1..n} (x + q^j) + Product_{j=1..n} (x*q^j + 1), p(x, 0, q) = 1, and q = 2, read by rows.
1, 3, 3, 9, 12, 9, 65, 70, 70, 65, 1025, 990, 560, 990, 1025, 32769, 31806, 11160, 11160, 31806, 32769, 2097153, 2064510, 671832, 178560, 671832, 2064510, 2097153, 268435457, 266338558, 87413592, 12850368, 12850368, 87413592, 266338558, 268435457
Offset: 0
Examples
Triangle begins as: 1; 3, 3; 9, 12, 9; 65, 70, 70, 65; 1025, 990, 560, 990, 1025; 32769, 31806, 11160, 11160, 31806, 32769; 2097153, 2064510, 671832, 178560, 671832, 2064510, 2097153;
Links
- G. C. Greubel, Rows n = 0..25 of the triangle, flattened
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); p:= func< x,n,q | n eq 0 select 1 else (&*[x+q^j: j in [1..n]]) + (&*[1+q^j*x: j in [1..n]]) >; T:= func< n,q | Coefficients(R!( p(x,n,q) )) >; [T(n,2): n in [0..10]]; // G. C. Greubel, Apr 26 2021 -
Mathematica
p[x_, n_, q_]:= If[n==0, 1, Product[x+q^j, {j,n}] + Product[x*q^j +1, {j,n}]]; T[n_, k_, q_]:= SeriesCoefficient[p[x,n,q], {x,0,k}]; Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 26 2021 *)
Formula
T(n, k) = [x^k](p(x, n, q)) where p(x,n,q) = Product_{j=1..n} (x + q^j) + Product_{j=1..n} (x*q^j + 1), p(x, 0, q) = 1, and q = 2.
Extensions
Edited by G. C. Greubel, Apr 26 2021