cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173051 Partial sums of A050288.

Original entry on oeis.org

10123457689, 20246923478, 30370389375, 40493875054, 50617360823, 60740857680, 70864405549, 80987954228, 91111523175, 101235101824
Offset: 1

Views

Author

Jonathan Vos Post, Feb 08 2010

Keywords

Comments

Partial sums of (base 10) Pandigital primes. Note that almost all primes are pandigital. a(59) is (after the first value) the first prime in this sequence. What is the smallest pandigital prime partial sum of (base 10) pandigital primes? In other bases?

Examples

			The least prime after a(1) is a(59) = 10123457689 + 10123465789 + 10123465897 + 10123485679 + 10123485769 + 10123496857 + 10123547869 + 10123548679 + 10123568947 + 10123578649 + 10123586947 + 10123598467 + 10123654789 + 10123684759 + 10123685749 + 10123694857 + 10123746859 + 10123784569 + 10123846597 + 10123849657 + 10123854679 + 10123876549 + 10123945687 + 10123956487 + 10123965847 + 10123984657 + 10124356789 + 10124358697 + 10124365879 + 10124365987 + 10124369587 + 10124378569 + 10124385967 + 10124389567 + 10124395867 + 10124398657 + 10124536789 + 10124538769 + 10124563789 + 10124563879 + 10124563987 + 10124568793 + 10124576893 + 10124578693 + 10124579863 + 10124583967 + 10124586397 + 10124589637 + 10124593867 + 10124596873 + 10124597683 + 10124635879 + 10124635897 + 10124638759 + 10124659873 + 10124673859 + 10124678953 + 10124683759 + 10124685379 = 597325496783 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A050288(i) = SUM[i=1..n] {p is prime and p, base 10, has all 10 digits in its decimal representation, digits may appear multiple times}.