A173062 Primes of the form 2^r * 13^s - 1.
3, 7, 31, 103, 127, 337, 1663, 5407, 8191, 131071, 346111, 524287, 2970343, 3655807, 22151167, 109051903, 617831551, 1631461441, 2007952543, 2147483647, 32127240703, 194664464383, 275716983697, 958348132351, 1357375919743, 1670616516607, 49834102882303, 57349132609183
Offset: 1
Keywords
Examples
2^2*13^0 - 1 = 3 = prime(2) => a(1). 2^3*13^1 - 1 = 103 = prime(27) => a(4). 2^7*13^9 - 1 = 1357375919743 = prime(50467169414) => a(25). list of (r,s) pairs: (2,0), (3,0), (5,0), (3,1), (7,0), (1,2), (7,1), (5,2), (13,0), (17,0), (11,2), (19,0), (3,5), (7,4), (17,2), (23,1), (7,6), (1,8), (5,7), (31,0), (9,7), (19,5), (1,10), (25,4), (7,9), (11,8), (27,5), (5,11), (25,6), (19,8), (13,10), (3,13), (29,7), (5,14), (39,5), (15,13), (5,16), ...
References
- Peter Bundschuh, Einfuehrung in die Zahlentheorie, Springer-Verlag GmbH Berlin, 2002.
- Leonard E. Dickson, History of the Theory of numbers, vol. I, Dover Publications, 2005.
- Paulo Ribenboim, Wilfrid Keller, and Joerg Richstein, Die Welt der Primzahlen, Springer-Verlag GmbH Berlin, 2006.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..950
Programs
-
PARI
lista(nn) = {my(q=1/2, p, w=List([])); for(r=0, logint(nn, 2), q=2*q; p=q/13; for(s=0, logint(nn\q, 13), p=13*p; if(ispseudoprime(p-1), listput(w, p-1)))); Set(w); } \\ Jinyuan Wang, Feb 23 2020
-
Python
from itertools import count, islice from sympy import integer_log, isprime def A173062_gen(): # generator of terms def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(n): def f(x): return n+x-sum(((x+1)//13**i).bit_length() for i in range(integer_log(x+1,13)[0]+1)) return bisection(f,n-1,n-1) return filter(lambda n:isprime(n), map(g,count(1))) A173062_list = list(islice(A173062_gen(),30)) # Chai Wah Wu, Mar 31 2025
Extensions
a(26)-a(28) from Jinyuan Wang, Feb 23 2020
Comments