cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A077315 Primes of the form 2^r * 11^s - 1.

Original entry on oeis.org

3, 7, 31, 43, 127, 241, 967, 5323, 8191, 117127, 131071, 524287, 7496191, 10307263, 77948683, 253755391, 428717761, 738197503, 1714871047, 2147483647, 16240345087, 27437936767, 42218553343, 1965081755647, 2414538435583, 7024111812607, 7860327022591, 16630113370111
Offset: 1

Views

Author

Amarnath Murthy, Nov 04 2002

Keywords

Crossrefs

Programs

  • PARI
    lista(nn) = {my(q=1/2, p, w=List([])); for(r=0, logint(nn, 2), q=2*q; p=q/11; for(s=0, logint(nn\q, 11), p=11*p; if(ispseudoprime(p-1), listput(w, p-1)))); Set(w); } \\ Jinyuan Wang, Feb 23 2020

Extensions

More terms from Ray Chandler, Aug 02 2003
a(26)-a(28) from Jinyuan Wang, Feb 23 2020

A173236 Primes of the form 2^r * 13^s + 1.

Original entry on oeis.org

2, 3, 5, 17, 53, 257, 677, 3329, 13313, 35153, 65537, 2768897, 13631489, 2303721473, 3489660929, 4942652417, 11341398017, 10859007357953, 1594691292233729, 31403151600910337, 310144109150467073, 578220423796228097
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 13 2010

Keywords

Comments

Necessarily r is even (elementary proof by induction).
s=0 is (trivial) case of 2 and the known five Fermat primes: 2, 3, 5, 17, 257, 65537 (A092506).
Fermat prime exponents r are 0, 1, 2, 4, 8, 16.

Examples

			2^0*13^0 + 1 = 2 = prime(1) => a(1).
2^10*13^1 + 1 = 13313 = prime(1581) => a(9).
list of (r,s): (0,0), (1,0), (2,0), (4,0), (2,1), (8,0), (2,2), (8,1), (10,1), (4,3), (16,0), (14,2), (20,1), (20,3), (28,1), (10,6), (26,2), (10,9), (32,5), (40,4), (10,13), (22,10), (32,8), (48,4), (20,13), (2,18), (28,11), (50,6).
		

References

  • Emil Artin, Galoissche Theorie, Verlag Harri Deutsch, Zürich, 1973.
  • Leonard E. Dickson, History of the Theory of numbers, vol. I, Dover Publications, 2005.
  • Paulo Ribenboim, Wilfrid Keller, and Joerg Richstein, Die Welt der Primzahlen, Springer-Verlag GmbH Berlin, 2006.

Crossrefs

Programs

  • GAP
    K:=10^7;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;
    B:=List(A,i->Factors(i-1));;
    C:=[];;  for i in B do if Elements(i)=[2] or Elements(i)=[2,13] then Add(C,Position(B,i)); fi; od;
    A173236:=Concatenation([2],List(C,i->A[i])); # Muniru A Asiru, Sep 10 2017
    
  • Python
    from itertools import count, islice
    from sympy import isprime, integer_log
    def A173236_gen(): # generator of terms
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(n):
            def f(x): return n+x-sum(((x-1)//13**i).bit_length() for i in range(integer_log(x-1,13)[0]+1))
            return bisection(f,n+1,n+1)
        return filter(lambda n:isprime(n), map(g,count(1)))
    A173236_list = list(islice(A173236_gen(),30)) # Chai Wah Wu, Mar 31 2025

A292890 Primes of the form 2^r * 17^s - 1.

Original entry on oeis.org

3, 7, 31, 67, 127, 271, 577, 1087, 2311, 8191, 78607, 131071, 524287, 1114111, 2367487, 2672671, 17825791, 42762751, 90870847, 606076927, 2147483647, 5151653887, 5815734271, 9697230847, 329705848831, 474351505987, 700624928767, 892896952447, 1168231104511, 2482491097087
Offset: 1

Views

Author

Muniru A Asiru, Sep 26 2017

Keywords

Comments

Primes of the forms 2^r * b^s - 1 where b = 1, 5, 7, 11, 13 are A000668 (Mersenne prime exponents), A077313, A077314, A077315 and A173062. When b = 3 we get A005105 with initial term 2.
For n > 1, all terms are congruent to 1 (mod 3).
Also, these are prime numbers p for which (34^p)/(p+1) is an integer.

Examples

			With n = 1, a(1) = 2^2 * 17^0 - 1 = 3.
With n = 4, a(4) = 2^2 * 17^1 - 1 = 67.
list of (r, s): (2, 0), (3, 0), (5, 0), (2, 1), (3, 1), (7, 0), (4, 1), (1, 2), (6, 1), (3, 2), (13, 0), (4, 3), (17, 0), (19, 0), (16, 1), (13, 2), (5, 4), (20, 1), (9, 4), (6, 5).
		

Crossrefs

Cf. Sequences of primes of the forms 2^n * q^s - 1: A000668 (q = 1), A005105 (q = 3), A077313 (q = 5), A077314 (q = 7), A077315 (q = 11), A173062 (q = 13).

Programs

  • GAP
    K:=10^7+1;; # to get all terms <= K.
    A:=Filtered(Filtered([1..K], i->i mod 3=1),IsPrime);;    I:=[17];;
    B:=List(A,i->Elements(Factors(i+1)));;
    C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));;
    A292890:=Concatenation([3],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
    
  • PARI
    isok(p) = isprime(p) && (denominator((34^p)/(p+1)) == 1); \\ Michel Marcus, Sep 27 2017

Extensions

More terms from Jinyuan Wang, Feb 23 2020
Showing 1-3 of 3 results.