A173077 Triangle T(n, k, q) = binomial(n, k) - 1 + q^floor(n/2)*binomial(n-2, k-1) with T(n, 0, q) = T(n, n, q) = 1 and q = 3, read by rows.
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 12, 23, 12, 1, 1, 13, 36, 36, 13, 1, 1, 32, 122, 181, 122, 32, 1, 1, 33, 155, 304, 304, 155, 33, 1, 1, 88, 513, 1270, 1689, 1270, 513, 88, 1, 1, 89, 602, 1784, 2960, 2960, 1784, 602, 89, 1, 1, 252, 1988, 6923, 13817, 17261, 13817, 6923, 1988, 252, 1
Offset: 0
Examples
Triangle starts: 1; 1, 1; 1, 4, 1; 1, 5, 5, 1; 1, 12, 23, 12, 1; 1, 13, 36, 36, 13, 1; 1, 32, 122, 181, 122, 32, 1; 1, 33, 155, 304, 304, 155, 33, 1; 1, 88, 513, 1270, 1689, 1270, 513, 88, 1; 1, 89, 602, 1784, 2960, 2960, 1784, 602, 89, 1; 1, 252, 1988, 6923, 13817, 17261, 13817, 6923, 1988, 252, 1; ... Row sums: 1, 2, 6, 12, 49, 100, 491, 986, 5433, 10872, 63223, ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^(Floor(n/2))*Binomial(n-2,k-1) -1 >; [T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2021
-
Mathematica
T[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1 + 3^Floor[n/2] Binomial[n-2, k- 1]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
Sage
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^(n//2)*binomial(n-2,k-1) -1 flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 09 2021
Formula
T(n, k, q) = binomial(n, k) - 1 + q^floor(n/2)*binomial(n-2, k-1) with T(n, 0, q) = T(n, n, q) = 1 and q = 3.