A173092 Numbers k such that 3k-4, 3k-2, 3k+2, and 3k+4 are primes.
3, 5, 35, 65, 275, 495, 625, 695, 1085, 1155, 1885, 3145, 4335, 5215, 5245, 5355, 6015, 6305, 6475, 7005, 7425, 8435, 10575, 11615, 14595, 17115, 18445, 20995, 22405, 23165, 24075, 25755, 26565, 27015, 27575, 29605, 32615, 33045, 33705, 36615, 38845, 39765, 40735, 45155, 48055, 52425
Offset: 1
Examples
3 is a term because 3*3-4=5, 3*3-2=7, 3*3+2=11, and 3*3+4=13 are all prime.
Crossrefs
Cf. A173037.
Programs
-
Magma
[ n: n in [0..60000] | IsPrime(3*n-2) and IsPrime(3*n+2) and IsPrime(3*n-4) and IsPrime(3*n+4) ]; // Vincenzo Librandi, Dec 04 2010
-
Mathematica
Select[Range[10^5], PrimeQ[3# - 4]&&PrimeQ[3# - 2] && PrimeQ[3# + 2] && PrimeQ[3# + 4]&] (* Alonso del Arte, Dec 04 2010 *)
Formula
a(n) = A173037(n)/3.
Extensions
Entries checked by D. S. McNeil, Nov 26 2010
Extended by Vincenzo Librandi and Charles R Greathouse IV, Mar 25 2010