A173108 Triangle, A000110 in every column > 0, shifted down twice.
1, 1, 2, 1, 5, 1, 15, 2, 1, 52, 5, 1, 203, 15, 2, 1, 877, 52, 5, 1, 4140, 203, 15, 2, 1, 21147, 877, 52, 5, 1, 115975, 4140, 203, 15, 2, 1, 678570, 21147, 877, 52, 5, 1, 4213597, 115975, 4140, 203, 15, 2, 1, 27644437, 678570, 21147, 877, 52, 5, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1; 2, 1; 5, 1; 15, 2, 1; 52, 5, 1; 203, 15, 2, 1; 877, 52, 5, 1; 4140, 203, 15, 2, 1; 21147, 877, 52, 5, 1; 115975, 4140, 203, 15, 2, 1; ...
Programs
-
Mathematica
T[n_, k_] := BellB[n - 2 k]; Table[T[n, k], {n, 0, 10}, {k, 0, Quotient[n, 2]}] // Flatten (* Jean-François Alcover, Apr 22 2022 *)
-
PARI
B(n) = sum(k=0, n, stirling(n, k, 2)); \\ A000110 tabf(nn) = for (n=0, nn, for(k=0, n\2, print1(B(n-2*k), ", "));); \\ Michel Marcus, Nov 19 2022
Formula
Bell sequence in every column, for columns > 0, shifted down twice.
Extensions
Keyword tabf and more terms from Michel Marcus, Nov 19 2022
Comments