cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A173109 Row sums of triangle A173108.

Original entry on oeis.org

1, 1, 3, 6, 18, 58, 221, 935, 4361, 22082, 120336, 700652, 4333933, 28345089, 195233255, 1411303634, 10675375402, 84276173438, 692752181561, 5917018378495, 52416910416933, 480786834535246, 4559132648864256, 44632792689619592, 450518001943669545
Offset: 0

Views

Author

Gary W. Adamson, Feb 09 2010

Keywords

Examples

			a(5) = 58 = 52 + 5 + 1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> add(b(n-2*k), k=0..iquo(n, 2)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 17 2021
  • Mathematica
    a[n_] := Sum[BellB[n-2k], {k, 0, Quotient[n, 2]}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 22 2022 *)

Formula

G.f.: G(0)/(1-x^2)/(1+x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 04 2013.
G.f.: ( G(0) - 1 )/(1-x^2) where G(k) = 1 + (1-x)/(1-x*k)/(1-x/(x+(1-x)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 22 2013
a(n+1) - a(n) = A087650(n+1). - Vladimir Reshetnikov, Oct 29 2015
a(n) = Sum_{k=0..floor(n/2)} A000110(n-2*k). - Alois P. Heinz, Jun 17 2021

Extensions

More terms from Sergei N. Gladkovskii, Jan 04 2013

A173110 Given triangle A173108 = M, then A173110 = Lim_{n->inf.} M^n; the left-shifted vector considered as a sequence.

Original entry on oeis.org

1, 1, 3, 6, 20, 60, 230, 950, 4420, 22230, 120914, 702820, 4343860, 28393280, 195492054
Offset: 0

Views

Author

Gary W. Adamson, Feb 09 2010

Keywords

Comments

Triangle A173108 as an infinite lower triangular matrix * A173110 = A173110;
i.e. the sequence remains unchanged.
Contribution from Gary W. Adamson, Jul 08 2010: (Start)
Let B(x) = (1 + x + 2x^2 + 5x^3 + 15x^4 + ...), Bell numbers, A000110; and
A(x) = (1 + x + 3x^2 + 6x^3 + 20x^4 + ...). Then A(x) = B(x) * B(x^2) *
B(x^4) * B(x^8) * ...; and B(x) = A(x)/A(x^2). (End)

Crossrefs

Cf. A000110 [From Gary W. Adamson, Jul 08 2010]

Formula

Given triangle A173108 = M, then A173110 = Lim_{n->inf.} M^n; the left-shifted vector considered as a sequence

A173111 Triangle read by rows, A173108 * the diagonalized variant of A173110.

Original entry on oeis.org

1, 1, 2, 1, 5, 1, 15, 2, 3, 52, 5, 3, 203, 15, 6, 6, 877, 52, 15, 6, 4140, 203, 45, 12, 20, 21147, 877, 156, 30, 20, 115975, 4140, 609, 90, 40, 60, 678570, 21147, 2631, 312, 100, 60
Offset: 0

Views

Author

Gary W. Adamson, Feb 09 2010

Keywords

Comments

Row sums = A173110: (1, 1, 3, 6, 20, 60, 230, 950, 4420, 22230,...).

Examples

			First few rows of the triangle =
1;
1;
2, 1;
5, 1;
15, 2, 3;
52, 5, 3;
203, 15, 6, 6;
877, 52, 15, 6;
4140, 203, 45, 12, 20;
21147, 877, 156, 30, 20;
115975, 4140, 609, 90, 40, 60;
678570, 21147, 2631, 312, 100, 60;
...
Example: row 7 = termwise products of (877, 52, 5, 1) and (1, 1, 3, 6) =
(877, 52, 15, 6); where (877, 52, 5, 1) = row 7 of triangle A173108, and
(1, 1, 3, 6) = the first four terms of sequence A173109.
		

Crossrefs

Formula

Let triangle A173108 = Q, and M = an infinite lower triangular matrix with A173110 as the rightmost diagonal and the rest zeros. Triangle A173111 = Q*M.
Showing 1-3 of 3 results.