cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A087650 a(n) = Sum_{k=0..n} (-1)^(n-k)*Bell(k).

Original entry on oeis.org

1, 0, 2, 3, 12, 40, 163, 714, 3426, 17721, 98254, 580316, 3633281, 24011156, 166888166, 1216070379, 9264071768, 73600798036, 608476008123, 5224266196934, 46499892038438, 428369924118313, 4078345814329010, 40073660040755336
Offset: 0

Views

Author

Vladeta Jovovic, Sep 23 2003

Keywords

Comments

a(n) is the number of set partitions of [n] that contain exactly one singleton block and all other blocks contain an entry > this singleton. For example, a(3)=3 counts 124/3, 134/2, 1/234 but not 123/4. - David Callan, Aug 27 2014
Partial sums are A173109. - Vladimir Reshetnikov, Oct 29 2015

Examples

			G.f. = 1 + 2*x^2 + 3*x^3 + 12*x^4 + 40*x^5 + 163*x^6 + 714*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ StirlingS2[n, k], {k, 1, n}]; Table[(-1)^n + Sum[(-1)^(n - k)*f[k], {k, 0, n}], {n, 0, 23}] (* Robert G. Wilson v *)
    Needs["DiscreteMath`Combinatorica`"]; Table[ Sum[(-1)^(n - k)*BellB[k], {k, 0, n}], {n, 0, 23}] (* Robert G. Wilson v *)
  • Maxima
    makelist(sum((-1)^(n-k)*belln(k),k,0,n),n,0,40); /* Emanuele Munarini, Sep 27 2012 */
    
  • PARI
    vector(30, n, n--; sum(k=0, n, (-1)^(n-k)*polcoeff(sum(i=0, k, prod( j=1, i, x / (1 - j*x)), x^k * O(x)), k))) \\ Altug Alkan, Oct 30 2015
  • Sage
    def A087650_list(len): # After the formula of David Callan.
        if len == 1: return [1]
        if len == 2: return [1,0]
        R = []; A = [1]; p = -1
        for i in (0..len-1):
            A.append(A[0] - A[i])
            A[i] = A[0]
            for k in range(i, 0, -1):
                A[k-1] += A[k]
            p = -p
            R.append(A[i+1] + p)
        return R
    A087650_list(24) # Peter Luschny, Aug 28 2014
    

Formula

E.g.f.: exp(-x)*((exp(x)-1)*exp(exp(x)-1)+1).
a(n) = (-1)^n + Bell(n) - A000296(n), with Bell(n) = A000110(n). - Wolfdieter Lang, Dec 01 2003
a(n) = A000296(n+1) + (-1)^n. - David Callan, Aug 27 2014
G.f.: 1/(1+x)/W(0), where W(k) = 1 - x/(1 - x*(k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 10 2014
a(0) = 1; a(n) = Sum_{k=1..n-1} binomial(n,k) * a(k-1). - Ilya Gutkovskiy, Mar 04 2021

A173108 Triangle, A000110 in every column > 0, shifted down twice.

Original entry on oeis.org

1, 1, 2, 1, 5, 1, 15, 2, 1, 52, 5, 1, 203, 15, 2, 1, 877, 52, 5, 1, 4140, 203, 15, 2, 1, 21147, 877, 52, 5, 1, 115975, 4140, 203, 15, 2, 1, 678570, 21147, 877, 52, 5, 1, 4213597, 115975, 4140, 203, 15, 2, 1, 27644437, 678570, 21147, 877, 52, 5, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 09 2010

Keywords

Comments

Row sums = A173109: (1, 1, 3, 6, 18, 58, 221, 935, ...).
Let the triangle = M. Then lim_{n->oo} M^n = A173110: (1, 1, 3, 6, 20, 60, ...).

Examples

			First few rows of the triangle:
       1;
       1;
       2,    1;
       5,    1;
      15,    2,   1;
      52,    5,   1;
     203,   15,   2,  1;
     877,   52,   5,  1;
    4140,  203,  15,  2, 1;
   21147,  877,  52,  5, 1;
  115975, 4140, 203, 15, 2, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := BellB[n - 2 k];
    Table[T[n, k], {n, 0, 10}, {k, 0, Quotient[n, 2]}] // Flatten (* Jean-François Alcover, Apr 22 2022 *)
  • PARI
    B(n) = sum(k=0, n, stirling(n, k, 2)); \\ A000110
    tabf(nn) = for (n=0, nn, for(k=0, n\2, print1(B(n-2*k), ", "));); \\ Michel Marcus, Nov 19 2022

Formula

Bell sequence in every column, for columns > 0, shifted down twice.

Extensions

Keyword tabf and more terms from Michel Marcus, Nov 19 2022

A173111 Triangle read by rows, A173108 * the diagonalized variant of A173110.

Original entry on oeis.org

1, 1, 2, 1, 5, 1, 15, 2, 3, 52, 5, 3, 203, 15, 6, 6, 877, 52, 15, 6, 4140, 203, 45, 12, 20, 21147, 877, 156, 30, 20, 115975, 4140, 609, 90, 40, 60, 678570, 21147, 2631, 312, 100, 60
Offset: 0

Views

Author

Gary W. Adamson, Feb 09 2010

Keywords

Comments

Row sums = A173110: (1, 1, 3, 6, 20, 60, 230, 950, 4420, 22230,...).

Examples

			First few rows of the triangle =
1;
1;
2, 1;
5, 1;
15, 2, 3;
52, 5, 3;
203, 15, 6, 6;
877, 52, 15, 6;
4140, 203, 45, 12, 20;
21147, 877, 156, 30, 20;
115975, 4140, 609, 90, 40, 60;
678570, 21147, 2631, 312, 100, 60;
...
Example: row 7 = termwise products of (877, 52, 5, 1) and (1, 1, 3, 6) =
(877, 52, 15, 6); where (877, 52, 5, 1) = row 7 of triangle A173108, and
(1, 1, 3, 6) = the first four terms of sequence A173109.
		

Crossrefs

Formula

Let triangle A173108 = Q, and M = an infinite lower triangular matrix with A173110 as the rightmost diagonal and the rest zeros. Triangle A173111 = Q*M.
Showing 1-3 of 3 results.