A173109 Row sums of triangle A173108.
1, 1, 3, 6, 18, 58, 221, 935, 4361, 22082, 120336, 700652, 4333933, 28345089, 195233255, 1411303634, 10675375402, 84276173438, 692752181561, 5917018378495, 52416910416933, 480786834535246, 4559132648864256, 44632792689619592, 450518001943669545
Offset: 0
Keywords
Examples
a(5) = 58 = 52 + 5 + 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1), j=1..n)) end: a:= n-> add(b(n-2*k), k=0..iquo(n, 2)): seq(a(n), n=0..25); # Alois P. Heinz, Jun 17 2021
-
Mathematica
a[n_] := Sum[BellB[n-2k], {k, 0, Quotient[n, 2]}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 22 2022 *)
Formula
G.f.: G(0)/(1-x^2)/(1+x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 04 2013.
G.f.: ( G(0) - 1 )/(1-x^2) where G(k) = 1 + (1-x)/(1-x*k)/(1-x/(x+(1-x)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 22 2013
a(n+1) - a(n) = A087650(n+1). - Vladimir Reshetnikov, Oct 29 2015
a(n) = Sum_{k=0..floor(n/2)} A000110(n-2*k). - Alois P. Heinz, Jun 17 2021
Extensions
More terms from Sergei N. Gladkovskii, Jan 04 2013