cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173109 Row sums of triangle A173108.

Original entry on oeis.org

1, 1, 3, 6, 18, 58, 221, 935, 4361, 22082, 120336, 700652, 4333933, 28345089, 195233255, 1411303634, 10675375402, 84276173438, 692752181561, 5917018378495, 52416910416933, 480786834535246, 4559132648864256, 44632792689619592, 450518001943669545
Offset: 0

Views

Author

Gary W. Adamson, Feb 09 2010

Keywords

Examples

			a(5) = 58 = 52 + 5 + 1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> add(b(n-2*k), k=0..iquo(n, 2)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 17 2021
  • Mathematica
    a[n_] := Sum[BellB[n-2k], {k, 0, Quotient[n, 2]}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 22 2022 *)

Formula

G.f.: G(0)/(1-x^2)/(1+x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 04 2013.
G.f.: ( G(0) - 1 )/(1-x^2) where G(k) = 1 + (1-x)/(1-x*k)/(1-x/(x+(1-x)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 22 2013
a(n+1) - a(n) = A087650(n+1). - Vladimir Reshetnikov, Oct 29 2015
a(n) = Sum_{k=0..floor(n/2)} A000110(n-2*k). - Alois P. Heinz, Jun 17 2021

Extensions

More terms from Sergei N. Gladkovskii, Jan 04 2013