A173118 Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 2, read by rows.
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 10, 6, 1, 1, 7, 20, 20, 7, 1, 1, 8, 27, 40, 27, 8, 1, 1, 9, 35, 75, 75, 35, 9, 1, 1, 10, 44, 110, 150, 110, 44, 10, 1, 1, 11, 54, 154, 276, 276, 154, 54, 11, 1, 1, 12, 65, 208, 430, 552, 430, 208, 65, 12, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 4, 1; 1, 5, 5, 1; 1, 6, 10, 6, 1; 1, 7, 20, 20, 7, 1; 1, 8, 27, 40, 27, 8, 1; 1, 9, 35, 75, 75, 35, 9, 1; 1, 10, 44, 110, 150, 110, 44, 10, 1; 1, 11, 54, 154, 276, 276, 154, 54, 11, 1; 1, 12, 65, 208, 430, 552, 430, 208, 65, 12, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]]; Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
-
Sage
@CachedFunction def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) ) flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021
Formula
T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 2.
Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = 2. - G. C. Greubel, Apr 27 2021
Extensions
Edited by G. C. Greubel, Apr 27 2021