cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173118 Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 10, 6, 1, 1, 7, 20, 20, 7, 1, 1, 8, 27, 40, 27, 8, 1, 1, 9, 35, 75, 75, 35, 9, 1, 1, 10, 44, 110, 150, 110, 44, 10, 1, 1, 11, 54, 154, 276, 276, 154, 54, 11, 1, 1, 12, 65, 208, 430, 552, 430, 208, 65, 12, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 10 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  4,  1;
  1,  5,  5,   1;
  1,  6, 10,   6,   1;
  1,  7, 20,  20,   7,   1;
  1,  8, 27,  40,  27,   8,   1;
  1,  9, 35,  75,  75,  35,   9,   1;
  1, 10, 44, 110, 150, 110,  44,  10,  1;
  1, 11, 54, 154, 276, 276, 154,  54, 11,  1;
  1, 12, 65, 208, 430, 552, 430, 208, 65, 12, 1;
		

Crossrefs

Cf. A007318 (q=0), A072405 (q= -1), A173117 (q=1), this sequence (q=2), A173119 (q=3), A173120 (q= -4), A173122.

Programs

  • Mathematica
    T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];
    Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
  • Sage
    @CachedFunction
    def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021

Formula

T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 2.
Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = 2. - G. C. Greubel, Apr 27 2021

Extensions

Edited by G. C. Greubel, Apr 27 2021