cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173123 a(n) = binomial(n+9,9)*6^n.

Original entry on oeis.org

1, 60, 1980, 47520, 926640, 15567552, 233513280, 3202467840, 40831464960, 489977579520, 5585744406528, 60935393525760, 639821632020480, 6496650417438720, 64038411257610240, 614768748073058304, 5763457013184921600, 52888193768049868800, 475993743912448819200
Offset: 0

Views

Author

Zerinvary Lajos, Feb 10 2010

Keywords

Comments

With a different offset, number of n-permutations (n>=9) of 7 objects: r, s, t, u, v, z, x, y with repetition allowed, containing exactly 9 u's.

Crossrefs

Programs

  • Magma
    [6^n* Binomial(n+9, 9): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
  • Mathematica
    Table[Binomial[n + 9, 9]*6^n, {n, 0, 20}]

Formula

a(n) = C(n + 9, 9)*6^n.
From Chai Wah Wu, Nov 12 2021: (Start)
a(n) = 60*a(n-1) - 1620*a(n-2) + 25920*a(n-3) - 272160*a(n-4) + 1959552*a(n-5) - 9797760*a(n-6) + 33592320*a(n-7) - 75582720*a(n-8) + 100776960*a(n-9) - 60466176*a(n-10) for n > 9.
G.f.: 1/(6*x - 1)^10. (End)
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 21093750*log(6/5) - 107683641/28.
Sum_{n>=0} (-1)^n/a(n) = 311299254*log(7/6) - 959739813/20. (End)