cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173138 Composite numbers k such that 2^(k-4) == 1 (mod k).

Original entry on oeis.org

4, 40369, 673663, 990409, 1697609, 2073127, 6462649, 7527199, 7559479, 14421169, 21484129, 37825753, 57233047, 130647919, 141735559, 179203369, 188967289, 218206489, 259195009, 264538057, 277628449, 330662479, 398321239, 501126487, 506958313, 612368311, 767983759
Offset: 1

Views

Author

Michel Lagneau, Feb 10 2010

Keywords

Comments

Besides the initial term, the sequence coincides with A033984 and consists of the odd terms > 7 of A015924.

Examples

			4 is a term: 2^(4 - 4) = 1 (mod 4).
		

References

  • A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). - In Russian.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 100000000 do: a:= 2^(n-4)- 1; b:= a / n; c:= floor(b): if b = c and tau(n) <> 2 then print (n); else fi;od:
  • Mathematica
    Select[Range[500000000],!PrimeQ[#]&&PowerMod[2,#-4,#]==1&] (* Harvey P. Dale, Nov 23 2011 *)
  • PARI
    is(n)=!isprime(n) && n>1 && Mod(2,n)^(n-4)==1 \\ Charles R Greathouse IV, Nov 23 2011
    
  • Python
    from sympy import isprime, prime, nextprime
    def afind(k=4):
        while True:
            if pow(2, k-4, k) == 1 and not isprime(k): print(k, end=", ")
            k += 1
    afind() # Michael S. Branicky, Mar 21 2022

Extensions

Simplified the definition, added cross-reference to A033984 R. J. Mathar, May 18 2010
More terms from Harvey P. Dale, Nov 23 2011
Typo in a(13) corrected by Georg Fischer, Mar 19 2022
a(24) and beyond from Michael S. Branicky, Mar 21 2022