A173138 Composite numbers k such that 2^(k-4) == 1 (mod k).
4, 40369, 673663, 990409, 1697609, 2073127, 6462649, 7527199, 7559479, 14421169, 21484129, 37825753, 57233047, 130647919, 141735559, 179203369, 188967289, 218206489, 259195009, 264538057, 277628449, 330662479, 398321239, 501126487, 506958313, 612368311, 767983759
Offset: 1
Keywords
Examples
4 is a term: 2^(4 - 4) = 1 (mod 4).
References
- A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). - In Russian.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..62
Programs
-
Maple
with(numtheory): for n from 1 to 100000000 do: a:= 2^(n-4)- 1; b:= a / n; c:= floor(b): if b = c and tau(n) <> 2 then print (n); else fi;od:
-
Mathematica
Select[Range[500000000],!PrimeQ[#]&&PowerMod[2,#-4,#]==1&] (* Harvey P. Dale, Nov 23 2011 *)
-
PARI
is(n)=!isprime(n) && n>1 && Mod(2,n)^(n-4)==1 \\ Charles R Greathouse IV, Nov 23 2011
-
Python
from sympy import isprime, prime, nextprime def afind(k=4): while True: if pow(2, k-4, k) == 1 and not isprime(k): print(k, end=", ") k += 1 afind() # Michael S. Branicky, Mar 21 2022
Extensions
Simplified the definition, added cross-reference to A033984 R. J. Mathar, May 18 2010
More terms from Harvey P. Dale, Nov 23 2011
Typo in a(13) corrected by Georg Fischer, Mar 19 2022
a(24) and beyond from Michael S. Branicky, Mar 21 2022
Comments