cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173226 Partial sums of A000364.

Original entry on oeis.org

1, 2, 7, 68, 1453, 51974, 2754739, 202115720, 19593627865, 2424473303306, 372795661540831, 69721670054678732, 15584255833611765637, 4102656765126735657998, 1256362298168756601126283, 442800255547191861154809104, 177962191835086481297819598769
Offset: 0

Views

Author

Jonathan Vos Post, Feb 13 2010

Keywords

Comments

Partial sums of Euler numbers. Partial sums of secant or "Zig" numbers. The subsequence of prime partial sum of Euler numbers begins 2, 7, 1453, no more through a(17). What is the next such prime?

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Abs[EulerE[2n]],{n,0,20}]] (* Harvey P. Dale, Aug 10 2024 *)
  • Python
    from sympy import euler
    def A173226(n): return sum(abs(euler(i)) for i in range(0,(n<<1)+1,2)) # Chai Wah Wu, Apr 16 2023

Formula

a(n) = Sum_{i=0..n} A000364(i).
G.f.: 1/U(0)/(1-x) where U(k)=1 + x - x*(2*k+1)*(2*k+2)/(1 - x*(2*k+1)*(2*k+2)/U(k+1)) ; (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 15 2012
G.f.: 1/(1-x)/Q(0), where Q(k)= 1 - x*(2*k+1)^2/(1 - x*(2*k+2)^2/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 27 2013
G.f.: Q(0)/(1-x), where Q(k) = 1 - x*(k+1)^2/( x*(k+1)^2 - 1/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013